Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Распространенность химических элементов




В ландшафтах

 

Кларки химических элементов. Периодическая система Д.И. Менделеева включает в себя 109 элементов, но в природе, в том числе в ландшафте, известно лишь 89, т.к. №№ 43, 85, 87 и 93-109 получены искусственно в результате ядерных реакций. Содержание одних и тех же химических элементов в разных ландшафтах неодинаково, что во многом обусловлено их перемещением – миграцией. Однако некоторые общие закономерности распределения химических элементов только миграцией объяснить невозможно. Так, во всех ландшафтах содержание кислорода велико, а золота и платины мало. Очевидно, существует какая-то закономерность распространенности химических элементов. которая может быть выявлена лишь при анализе среднего химического состава земной коры, который впервые был установлен в 1889 г. В честь американского геохимика Ф.У.Кларка, посвятившего более 40 лет решению данной проблемы, А.Е. Ферсман предложил в 1923 г. среднее содержание химического элемента в земной коре или какой-либо ее части называть кларком. Кларки литосферы неоднократно проверялись различными методами, и средний химический состав части литосферы доступной для исследования установлен достаточно точно. Но еще точно не известны кларки платины и платиноидов, инертных газов и некоторых других элементов. Все же главная особенность распространения химических элементов установлена – это огромная контрастность кларков. Величины кларков литосферы различаются в миллиарды раз: от 47 % для кислорода до 7х10-8 для рения (еще ниже содержание радия, протактиния и некоторых других элементов). Контрастность распространения химических элементов станет особенно наглядной, если расположить все элементы в ряд по их кларкам. Тогда окажется, что почти половина твердой земной коры состоит из одного элемента – кислорода (кларк 47 %). Иначе говоря, земная кора – это «кислородная сфера», кислородное вещество. На втором месте стоит кремний (29,5 %), на третьем – алюминий (8,05). В сумме они составляют 84,55 % твердой земной коры. Если к этому числу добавить еще железо (4,65), кальций (2,96), калий (2,5), натрий (2,5), магний (1,87), титан (0,45), то получим 99,48 %, т.е. практически почти всю земную кору. На долю остальных 80 % элементов приходится менее 1 % массы литосферы.

Различают кларки весовые (в процентах массы на 100 частей или в граммах на тонну), атомные (в процентах от общего количества атомов), объемные (в процентах от общего объема электростатических полей атомов).

В каждой сфере Земли можно выделить несколько наиболее распространенных химических элементов. Основную массу литосферы, как уже отмечалось выше, составляют три элемента (кислород, кремний и алюминий), живых организмов – три (кислород (кларк весовой 70 %), углерод (18 %), водород (10,5 %), гидросферы – два (кислород (85,77 %) и водород (10,73 %), атмосферы – два (азот (75,31 %) и кислород (23, 01%). На долю всех остальных химических элементов приходится в земной коре 0,97 %, в живых организмах – 1,5 %, в гидросфере – 3,5 %, в атмосфере – 1,68 %.

Закономерности распространения химических элементов в ландшафтах нашли отражение в периодической системе Д.И.Менделеева. Наиболее распространены те элементы, которые имеют небольшие порядковые номера. Например, первые 26 элементов таблицы составляют 99,74 %. Преобладают элементы с четными порядковыми номерами (86 %).

В ландшафте в общем преобладают те же элементы, что и в литосфере, но в нем большую роль играют углерод, водород, азот, хлор, поступающие главным образом из атмосферы и гидросферы. Понятие «кларк» нельзя применять при характеристики среднего содержания элементов в пределах отдельного региона или массива (например, Кавказских гор, Беларуси и т.д.). В таком случае используются понятия «среднее содержание» или «фон».

Все элементы по величине среднего содержания в земной коре делятся на основные, редкие и рассеянные. Основные элементы (кислород, кремний, алюминий, железо, кальций, калий, натрий, магний, водород, кларк их больше единицы) широко распространены в породах, иногда концентрируются в месторождении. Элементы с низкими кларками (примерно менее 0,01-0,001 %) называются редкими. Например, медь, цинк, молибден, кобальт, ванадий, вольфрам и др. Некоторые из них концентрируются в земной коре. Например, на участках медных, цинковых и свинцовых месторождений медь, цинк, свинец могут быть главными элементами ландшафта. Элементы, которые обладают и низкими кларками и малой способностью к концентрации, рассеяны в земной коре и во всех породах почвах и минералах встречаются в ничтожных количествах. Такие элементы называются редкими рассеянными. Их роль всегда в ландшафте второстепенна (кадмий, радий, скандий, галлий, индий, гафний и др.).

А.И.Перельман, рассматривая поведение химических элементов, выделяет типоморфные (ведущие), или геохимические диктаторы, т.е. химические элементы, определяющие существенные и характерные черты данного ландшафта. Число их невелико. К ним относятся кальций, водород, железо, сера, хлор и другие элементы. Это позволяет говорить о кальциевых, кислых и прочих ландшафтах (например, кальциевая и кислая тайга).

Различия в кларках приводят к тому, что химическое сходство элементов отнюдь не означает их «геохимическое сходство». Так, например, у натрия кларк высокий (2,5), поэтому его много в ландшафтах. Солончаки, соляные озера – это «натриевые ландшафты», т.к. натрий определяет геохимическое своеобразие ландшафта, физико-химические условия среды, т.е. является типоморфным. Цезий в химическом отношении похож на натрий, но его кларк мал (3,7х10-4) и влияние на геохимические особенности ландшафта невелико. Он не определяет физико-химических условий среды и мигрирует в той обстановке, которая создана типоморфными элементами. Если бы у цезия кларк был, как у натрия, то его роль в ландшафте была бы так же велика, он был бы типоморфным. Следовательно, химические элементы с низкими клаками не могут быть типоморфными из-за малых концентраций в системах – они вынуждены мигрировать в той обстановке, которую создают типоморфные элементы. Именно различия в кларках определяют ведущую роль натрия и подчиненную лития, цезия, рубидия. Редкие элементы в местах их концентрации становятся ведущими, например, в месторождениях урана, молибдена и т.д. Но ведущее значение элемента зависит не только от от его кларка и концентрации в данной системе. Важно, чтобы элемент мигрировал и накапливался. Распространенные, но слабо мигрирующие элементы не являются ведущими. Один и тот же элемент в разных системах может быть и ведущим и второстепенным. Например, железо имеет ведущее значение в таежных болотах, но его роль не велика в пустынях. Наконец, если элемент энергично мигрирует, но не накапливается, он также не является ведущим. Так, натрий и хлор энергично выщелачиваются во влажных тропиках из кислой коры выветривания и не являются там ведущими. Только в соляных озерах и солончаках, где натрий и хлор мигрируют и накапливаются, они становятся ведущими. Из сказанного следует, предложенный А.И. Перельманом, принцип подвижных компонентов: геохимическая особенность ландшафта определяется элементами с высокими кларками, наиболее активно мигрирующими и накапливающимися в данном ландшафте.

В начале 20 века (на 12 съезде русских естествоиспытателей и врачей в 1909 г.) В.И.Вернадский пришел к выводу о всеобщем распространении химических элементов, о том, что «все элементы есть везде». «В каждой капле и пылинке живого вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы… История никеля, золота, урана, гелия и т.д. приводит нас к одинаковым выводам. Они находятся всюду и могут быть всюду констатированы. Они собраны в состоянии величайшего рассеяния…» таким образом, все элементы есть везде, речь может идти только о недостаточной чувствительности анализа, не позволяющего определить содержание того или иного элемента в изучаемой системе. Это положение о всеобщем рассеянии химических элементов Н.И.Сафронов предложил именовать законом Кларка-Вернадского.

Когда был установлен средний состав земной коры, естественно, возник вопрос – в чем причина столь неравномерной распространенности элементов. Почему одних много, а других мало? Эту причину стали искать в особенностях строения атомов. Напомним, что атомы состоят из ядра и электронной оболочки, причем электроны, наиболее удаленные от ядра, определяют химические свойства элемента. Естественно, возникло предположение, что кларки элементов связаны с их химическими свойствами, т.е. зависят от строения внешних электронных орбит атомов (числа валентных электронов и т.д.). Однако оказалось, что это не так. Например, щелочные металлы – литий, натрий, калий, рубидий, цезий, франций в химическом отношении близки друг к другу – одновалентны (на внешней орбите один электрон), образуют едкие щелочи, легкорастворимые соли и т.д. Кларки же их резко различны: натрия и калия в земной коре много (2,5 %), рубидия мало (1,5х10-2), лития еще меньше, цезий очень редок, а франций отсутствует и был получен искусственно. Аналогично резко различны кларки и других химически близких элементов. Поэтому кларки не зависят от химических свойств элементов или, точнее, в основном не зависят. Тогда мысль исследователей обратилась к другой части атома – к ядру, состоящему их протонов и нейтронов. Выявилось, что в земной коре преобладают легкие атомы, занимающие начальные клетки периодической системы, ядра которых содержат небольшое количество протонов и нейтронов. После железа (№ 26) нет ни одного элемента с большим кларком. Эта закономерность была отмечена еще в 1869 Д.И.Менделеевым. Другую особенность распространенности элементов установил итальянский ученый Оддо и американский – Гаркинс, которые отметили, что в земной коре преобладают элементы с четными порядковыми номерами и четными атомными массами, т.е. у которых атомные ядра содержат четное число протонов и нейтронов. Для первых по распространенности 9 элементов кларки четных составляют в сумме 86,43 %, а кларки нечетных – только 13,03 %. Особенно велики кларки элементов, атомная масса которых делится на 4. Это кислород, магний, кремний, кальций и т.д. среди атомов одного и того элемента преобладают изотопы, массовые числа которых кратны 4.

В отличие от Земли главным элементом космоса является водород, взаимодействие ядер которого в центральных частях звезд при температурах в десятки миллионов градусов приводит к синтезу ядер гелия. Поэтому Вселенная в основном имеет водородно-гелиевый состав. Синтез более тяжелых ядер имел подчиненное значение – распространенность их в звездах (в том числе на Солнце) много меньше, чем водорода и гелия. Наибольшее значение опять-таки имел синтез легких ядер, особенно четных (кислорода, кальция и т.д.). Синтез тяжелых ядер, включающих большое число протонов и нейтронов, менее вероятен, образующиеся ядра часто оказывались неустойчивыми и постепенно распадались. Некоторая часть этих ядер не полностью разрушилась и дожила до наших дней. Сейчас, как и миллиарды лет назад, они превращаются в ядра более легких элементов. Это явление радиоактивности было открыто в самом конце 20 в. в Париже Пьером и Марией Кюри. Помимо радия радиоактивность характерна для урана, калия, рубидия, рения, тория и др. элементов. Содержание их в земной коре миллиарды лет назад было выше, чем сейчас. Некоторые тяжелые ядра за прошедшие миллиарды лет распались полностью, и на Земле мы не знаем соответствующих элементов. Они были получены искусственно, часть открыта в звездах. Это технеций (№ 43), астат (№ 85), кюрий (№ 96), берклий (№ 97), калифорний (№ 98) и другие трансурановые элементы.

Звездная материя, прежде чем превратится в земное вещество, прошла значительную историю, дифференциацию, в которой важную роль играли химические свойства элементов, определяемые электронным строением атомов. Поэтому твердая земная кора по составу сильно отличается от звезд и, в частности, от Солнца. Если Солнце, как и другие звезды, состоит из водорода и гелия с незначительной примесью других элементов, то Земля почти утратила свой космический гелий, который, будучи легким и инертным элементом, улетучился в мировое пространство. Утеряна и часть водорода, в то время как другая часть его атомов соединилась с кислородом и образовала воду – гидросферу планеты. Более тяжелых элементов в звездах меньше, но именно они образуют основную массу Земли. Это в первую очередь легкие элементы начала периодической системы. Самых тяжелых мало и на Земле.

Чем больше кларк элемента, тем при сходных химических свойствах выше его содержание в природных водах, а следовательно, и большая вероятность образования насыщенных растворах, осаждения минералов. Редкие и особенно редкие рассеянные элементы, как правило, не насыщают природные воды, в связи с чем число их минералов невелико. Например, для кальция известно 385 минералов (кларк 2,96), а его химический аналог радий (кларк около 10-10) не образует ни одного собственного минерала. Аналогично калий (2,5) образует 106 минералов, а рубидий (0,015) – 0, сера (0,047) – 368, а ее аналог Se (5х10-6) – 37 и т.д.

При образовании минералов редкие катионы обычно связываются с распространенными анионами, редкие анионы с распространенными катионами. Поэтому в ландшафтах известны сульфаты, карбонаты, фосфаты, редких металлов и селенаты, ванадаты, арсенаты распространенных катионов (CaSeO4, Na2SeO4, PbSeO4, (UO2)3(PO4)2 и т.д.). Образование минералов из редких катионов и анионов маловероятно. Например, CaCrO4 известен, а SrCrO4 - нет, так как концентрация соответствующих ионов не достигает состояния насыщенного раствора.

Таким образом, способность к минералообразованию, количество самостоятельных минеральных видов зависит, с одной стороны, от химических свойств элемента, а с другой, от его кларка. Низкие кларки многих элементов – одна из причин ограниченности числа минералов. Это определяет важное отличие природных реакций от лабораторных.

Е.М.Квятковский элементы с большой способностью к минералообразованию назвал минералофильными (уран, сера, селен и др.), а с малой минералофобными (галий, радий, скандий, индий и др.).

В ландшафте в общем преобладают те же элементы, что и в земной коре, но все же их содержание в почвах, водах, организмах, как правило, отличается от кларка, хотя порядок величин нередко сохраняется.

Основной геохимический закон В.М.Гольдшмидта. Согласно этому закону кларки элементов зависят от строения атомного ядра, а их миграция – от наружных электронов, определяющих химические свойства элементов. Это глубокое обобщение нуждается в некоторых коррективах: кларки земной коры зависят не только от строения атомного ядра, но и от химических свойств (строения электронных оболочек), т.к. сама кора является продуктом миграции – выплавления базальтов из мантии и других процессов. Все же важнейшие закономерности кларков зависят от строения атомных ядер (кислорода много, золота мало и т.д.). С другой стороны, и миграция элементов зависит не только от химических свойств, но и от кларков, которые во многом определяют содержание элементов в растворах и расплавах, их способность к осаждению, минералообразованию и т.д. Поэтому миграция элементов определяется как его химическими свойствами, так и величиной кларка.

Концентрация и рассеяние химических элементов. Миграция элементов приводит к значительному их перераспределению: они концентрируются и рассеиваются. Их содержание в почвах, коре выветривания, водах, организмах, как правило, отличается от кларка. В связи с этим большое значение приобрела характеристика миграции с помощью различных коэффициентов, особенно кларков концентрации и кларков рассеяния.

Кларк концентрации (КК) – это отношение содержания элемента в конкретном объекте к его кларку в литосфере. Наибольшие величины КК характерны для ртути и сурьмы, содержание которых в почвах на участках месторождений может выше их кларка в сотни тысяч раз. Ниже КК для золота, олова, вольфрама (10 000-100 000). У таких элементов, как железо, магний, калий, КК не превышает 10-100. Таким образом, зная кларк элемента и максимальное значение КК, можно установить те пределы, в которых данный элемент будет встречаться в ландшафте. Если КК меньше единицы, то для получения большей контрастности можно вычислить обратные величины – кларки рассеяния (КР), представляющие собой отношение кларка элемента в литосфере к его содержанию в данном объекте. Хорошее представление о различиях в миграции элементов дает сравнение кларков концентрации различных элементов, т.е. вычисление отношений ККх/ККу. Кроме КК и КР в геохимии ландшафтов используют и многие другие коэффициенты.

Парагенные и запрещенные ассоциации элементов. Понятие о парагенезисе элементов ввел в 1909 г. В.И.Вернадский, имея ввиду их совместную концентрацию. Обусловленную единым процессом. Парагенная ассоциация может быть как одновременной, так и неодновременной, связанной, например. последовательным осаждением элементов из вод. наиболее изучены парагенные ассоциации элементов в минералах. Ассоциации главных элементов, как правило, объясняется законами кристаллохимии (например, кальций, углерод и кислород в кальците, натрий и хлор в галите). Более сложны и разнообразны парагенезисы элементов-примесей. Так, для гидрооксидов марганца часто характерна примесь бария и кобальта, для урановых минералов - радия, для гипса – стронция. Причины образования подобных ассоциаций различны: сорбция, близость ионных радиусов, радиоактивный распад и др. Хорошо изучены также парагенные ассоциации элементов в континентальных отложениях, корах выветривания и почвах. Например, для солончаков характерен парагенезис натрия, хлора, серы, кальция, магния, стронция, а из редких элементов местами также молибден, цинк, уран, ванадий, литий, бор, селен, бром и др. Понятие парагенезиса элементов применимо и к более крупным системам – ландшафтам, бассейнам рек, всей биосфере.

Кроме парагенных различают запрещенные ассоциации элементов (отрицательный парагенезис), т.е. ассоциации, невозможные в данной системе.

Ландшафтно-геохимические системы. Элементарные ландшафтно-геохимические системы (элементарный ландшафт). В геохимии ландшафта своя терминологическая система. Понятие элементарный ландшафт у геохимиков примерно соответствует фации у ландшафтоведов. Фации, сменяющие друг друга от местного водораздела к местной депрессии, связанные между собой миграцией вещества, представляет собой геохимически сопряженный ряд – звено (Глазовская, 1964) или катену. Части звеньев, приуроченные к разным элементам форм рельефа (вершинным поверхностям холмов, склонам, депрессиям), соответствуют подурочищам. Для урочищ и местностей, принятых в ландшафтоведении, в геохимии ландшафтов нет аналогов, но сам термин местность, местный геохимический ландшафт употреблялся для обозначения большей или меньшей территории, на которой наблюдается повторение определенных ландшафтных звеньев (катен). В современной литературе – это просто геохимические ландшафты (Гаврилова, 1985). Среди них различают простые и сложные. Простые состоят из одних и тех же звеньев и возникают в условиях однородного состава пород и простого расчленения рельефа. В сложных разные породы и (или) разное расчленение рельефа.

Характерная особенность элементарного ландшафта состоит в том, что в нем нет никаких каких-либо внутренних причин, ограничивающих его размеры. Отсюда А.И.Перельман предложил критерий выделения элементарного ландшафта: при отнесении какого-либо участка земной поверхности к элементарному ландшафту необходимо учитывать возможность (хотя бы мысленную) распространения данного элементарного ландшафта на значительно большей территории. Поэтому, например, пятно солончака размером в 10 кв.м является элементарным ландшафтом, так как известны солончаки размером в десятки и сотни раз больше.

Наименьшая площадь, на которой размещаются все части элементарного ландшафта, называется площадью выявления. Чем сложнее элементарный ландшафт, чем интенсивнее в нем протекает миграция химических элементов, чем больше в нем информации, т.е. чем больше в нем информации, тем больше и площадь выявления. Поэтому наименьшие площади выявления характерны для пустынь без высшей растительности (шоровые солончаки, такыры), а наибольшие для – для лесных ландшафтов влажных тропиков с их огромным видовым разнообразием (биологической информацией). Площадь выявления – это важная константа, имеющая большое значение для классификации элементарных ландшафтов.

Под мощностью элементарного ландшафта понимается расстояние от его верхней границы до нижней. Верхняя граница находится в тропосфере и определяется зоной распространения пыли земного происхождения (из данного или соседнего ландшафта), обитания организмов. Нижней границей в ряде случаев является горизонт грунтовых вод (включительно). Мощность элементарного ландшафта колеблется в значительных пределах и общем подчиняется тем же закономерностям, что и площадь выявления: чем разнообразней элементарный ландшафт, т.е. чем больше в нем информации и чем она сложнее, тем больше и мощность. Так мощность мала на такыре и велика в экваториальном лесу.

Вследствие миграции химических элементов элементарный ландшафт неоднороден в вертикальном направлении, что создает радиальную геохимическую структуру (ярусы или горизонты), характеризующуюся рядом ландшафтно-геохимических коэффициентов (R-анализ).

Ярусы – это природные тела – надземная часть ландшафта (ярус живого вещества), почва, кора выветривания, водоносный горизонт. В надземной части вертикального профиля элементарного ландшафта выделяется ярус живого вещества. Для этого яруса характерна концентрация элементов-органогенов (углерод, кислород, азот, водород). Их соединения в летучих формах обусловливают специфический состав приземного воздуха. Мощность яруса живого вещества максимальная во влажных тропических лесах, минимальная в водорослевых и лишайниковых сообществах пустынь. Кроме того, ярус живого вещества) также дифференцируется в вертикальном отношении (например, растительный покров состоит из ярусов – ярус мхов и ярус деревьев в тайге и т.д.).

Ниже располагается ярус почв, мощность которого определяется степенью интенсивности почвообразовательного процесса. В пределах этого яруса выделяются почвенные горизонты, которые отличаются содержанием элементов и их сочетанием. В почвенной толще протекают процессы взаимодействия между живыми организмами и органоминеральными соединениями.

Ниже яруса почв расположена порода, где происходят физико-химические процессы, которые носят общее название – процессы выветривания. Этот ярус называется ярусом коры выветривания.

Самый нижний ярус вертикального профиля ландшафта – ярус грунтовых вод. Геохимические особенности процессов, протекающих в этом ярусе, определяются режимом и составом вод и водовмещающих пород, а также составом химических элементов, поступающих из ярусов коры выветривания и почв.

Не все ярусы имеются в каждом элементарном ландшафте. В некоторых из них отсутствует водоносный горизонт (т.е. он находится за пределами ландшафта), в других он совмещен с почвой (поймы, некоторые болота), в третьих кора выветривания совмещена с почвой и т.д. Каждый ярус отличается от другого химическим составом.

К числу морфологических признаков относится и окраска ландшафтов. Окраска – это физическое явление селективного поглощения или отражения кристаллом определенного диапазона электромагнитного излучения в пределах видимой части спектра. Общая окраска ландшафта зависит от наиболее распространенных элементов и минералов, а также от органических соединений. Совокупность ионов кремния придает кварцевому песку прозрачность. Белый цвет почвенных новообразований степных и пустынных ландшафтов объясняется наличием кальция, натрия (корки солончаков, известковые конкреции). В ярусе почв и коры выветривания преобладают оттенки красного и желтого цвета как результат присутствия трехвалентного железа и гидрофильности его соединений. Зелено-голубой цвет глеевых горизонтов заболоченных почв определяется двухвалентным железом. Оттенки окраски изменяются также в зависимости от степени увлажненности породы. Влажная порода имеет более яркий и темный оттенок по сравнению с аналогичной сухой почвой.

Окраску высших растений (от оранжевой до синей) создают антоцианы, которые содержатся почти во всех растительных тканях.

Однако в научном отношении вопрос окраски ландшафтов почти не разработан, хотя некоторые пути были намечены А.Е.Ферсманом в книге «Цвета минералов» (1936). Окраски минеральных соединений А.Е.Ферсман разделил на идиохроматические (собственные), аллохроматические (вызванные наличием в кристалле минерала второстепенных элементов – хромоформов, например, титана, железа, марганца и т.д.), псевдохроматичсекие (связанные с интерференционными явлениями).

По условиям миграции химических элементов Б.Б.Полынов (1952) выделил три основных элементарных ландшафта: элювиальный, супераквальный и субаквальный. М.А.Глазовская (1964) дополнила их новыми видами.

Элювиальный элементарный ландшафт приурочен к плоским водоразделам с глубоким уровнем грунтовых вод, не оказывающих заметное влияние на бик. А.И.Перельман предлагает его называть автономным элементарным ландшафтом. Вещество и энергия в этом ландшафте поступают из атмосферы и через атмосферу. Характерны прямые нисходящие водные связи. Слагающие породы по вертикальному профилю могут быть как однородными, так и разнородными. Почвы автоморфные (атмосферного увлажнения). В элювиальных почвах происходит вмывание растворимых веществ и образование иллювиальных горизонтов. Миграция химических элементов по профилю почвы связана с движением почвенной влаги в соответствии с типом водного режима. Здесь идет преимущественно вынос вещества с нисходящими токами влаги. Выносу противостоит активный биологический захват элементов растениями и удержание их в биологическом круговороте. Происходит отбор растительных форм, которые способны существовать в данных условиях. При аридном климате легкоподвижные химические элементы аккумулируются в почве, что приводит к избыточному накоплению солей. По всему вертикальному профилю элювиального элементарного ландшафта идет процесс окисления, который способствует миграции ванадия, молибдена, селена, урана, рения и аккумуляции железа, марганца, кобальта.

Супераквальный (надводный) элементарный ландшафт тяготеет к пониженным элементам рельефа. Грунтовые воды лежат близко от поверхности (как правило, в пределах корнеобитаемого слова). Они влияют на почвы и растительность. Здесь формируются полугидроморфные и гидроморфные почвы, в которых содержание элементов выше, чем в автоморфных. Здесь поселяются растения, приспособленные к избытку влаги и часто (например, галофиты) к избытку определенных химических элементов, привносимых грунтовыми водами. По содержанию химических элементов супераквальный ландшафт богаче за счет частичного привноса их из элювиального ландшафта. В тоже время из супераквального ландшафта химические элементы выносятся грунтовыми и поверхностными водами в субаквальный. Избыток влаги создает условия для восстановления химических элементов и соединений, что способствует миграции железа, марганца, кобальта и аккумуляции ванадия, селена, молибдена, урана. Поступление извне ряда химических соединений оказывает глубокое влияние на интенсивность и направление химических реакций, на внешние формы, анатомию и физиологию организмов, их общую массу. В супераквальных ландшафтах преобладают обратные водные связи.

Субаквальные (подводный) элементарный ландшафт формируется на различных по составу подводных отложениях рек, озер, шельфовой зоны морей и океанов. Для этих ландшафтов характерен привнос материала с твердым и жидким боковым стоком. В отличие от элювиального ландшафта, где происходит постепенное разрушение пород, в субаквальном ландшафте идет отложение и накопление наносов и осадков, которые превращаются в породу. В субаквальных ландшафтах наблюдаются особые жизненные формы растений и животных и местами особые систематические группы. Подводные растения усваивают химические элементы, накапливающиеся в донных отложениях, а при отмирании преобразуются в сапропели – органо-минеральные отложения с высоким содержанием битумов. В этих условиях протекает восстановление химических элементов и соединений, накапливается сероводород. Для субаквальных ландшафтов характерна аккумуляция тяжелых металлов и синтетических органических соединений – результата производственной деятельности человека.

Объем понятий «элювиальный», «супераквальный», «субаквальный» ландшафты в настоящее время несколько изменился. Так, к супераквальным ландшафтам относят верховые болота, хотя они занимают водораздельные поверхности и питаются не грунтовыми, а атмосферными водами.

Продукты выветривания и почвообразования элювиального ландшафта поступают с поверхностным и подземным стоком в пониженные элементы рельефа и влияют на формирование супераквальных и субаквальных ландшафтов. Поэтому последние называются подчиненными. Напротив, элювиальные ландшафты менее зависят от субаквальных и супераквальных ландшафтов, так как не получают от них химических элементов с жидким и твердым стоком. Поэтому элювиальные ландшафты называются также автономными, их почвы и растительность образуют центр всего ландшафта.

Независимость автономных ландшафтов от надводных и подводных весьма условна, так как поймы и водоемы оказывают определенное влияние на ландшафты водоразделов через циркуляцию водяных паров, распространение туманов, перенос ветром различных соединений, содержащихся в воздухе, миграцию флоры и фауны с прибрежных участков на водораздельные и т.д. Поэтому автономность водоразделов понимается в смысле отсутствия поступления жидкого и твердого стока от надводных и подводных ландшафтов. Таким образом, различия между автономными, надводными и подводными ландшафтами заключается в характере аккумулятивных процессов и водных связей: в автономных аккумуляция связана с поступлением веществ из горных пород и атмосферы, а в надводных и подводных еще имеет место поступление из грунтовых и поверхностных вод. Для автономных ландшафтов характерны прямые нисходящие водные связи, для подчиненных – обратные.

Наряду с основными элементарными ландшафтами существуют многочисленные переходные формы, приуроченные к склонам, поймам рек и т.д. Поэтому М.А.Глазовская дополнила классификацию элементарных ландшафтов. Замкнутое понижение водораздела с глубоким уровнем грунтовых вод было названо аккумулятивно-элювиальным ландшафтам. Верхняя часть пологого и крутого склона или выпуклая вершина относятся к трансэлювиальным ландшафтам. В нижней части склона, на делювиальных и пролювиальных отложениях, формируется трансаккумулятивный (элювиально-аккумулятивный) элементарный ландшафт. Супераквальные ландшафты она делит на транссупераквальный, с проточными грунтовыми водами и активным водообменном, и собственно супераквальный ландшафт – с застойными грунтовыми водами замкнутых понижений. Субаквальные ландшафты с проточной водой (река, проточное озеро, море) называются трансаквальными, а с непроточной водой (непроточное озеро) – аквальными.

В поймах выражено сезонное изменение водного режима. В межень миграция элементов осуществляется по типу транссупераквальных ландшафтов, а в половодье по типу – по типу трансаквальных.

Геохимический ландшафт. Элементарные ландшафты образуют связанные между собой образования (ассоциации). Так, в районах со стоком водоразделы, склоны, долины, водоемы – тесно связанные части одного целого, которое Б.Б.Полынов(1944, 1946) назвал геохимическим ландшафтом. По определению А.И. Перельмана геохимический ландшафт – это парагенетическая ассоциация сопряженных элементарных ландшафтов, связанных между собой миграцией элементов. По К.Г.Раману – это ряд фаций. Геохимический ландшафт может не включать некоторые подчиненные элементарные ландшафты, например, субаквальный, транссупераквальный, трансэлювиальный. Ярусы коры выветривания и почв могут слагать породы монолитные (однородные по составу и генезису) и гетеролитные (разнородные). Примером геохимического ландшафта может служить степной мелкосопочник с соленным озером в понижении и солончаками по берегам этого озера или участок моренного рельефа в таежной зоне, составными частями которого служат холмы, покрытые хвойным лесом, заболоченные понижения, озера и реки. Наибольшее значение для осуществления связей между элементарными ландшафтами составляющими единый геохимический ландшафт, имеет поверхностный и подземный сток. Для характеристики геохимических ландшафтов кроме мощности и площади, а также структуры, окраски и других морфологических признаков выявления введены такие понятия, как геохимическое сопряжение и местный ландшафт. Геохимическое сопряжение представляет собой закономерное для каждого геохимического ландшафта сочетание образующих его элементарных ландшафтов. Или другими словами – это присущий геохимическому ландшафту тип обмена веществ, энергии и информации между элементарными ландшафтами. Различают геохимические ландшафты с совершенным и несовершенным сопряжением (по Н.К.Чертко, 1981).

Морфология геохимических ландшафтов рассматривалась Б.Б. Полыновым (1953) и М.А.Глазовской (1964). Совокупность элементарных ландшафтов, свойственных определенному геоморфологическому элементу (водоразделу, склону, террасе и т.д.) Б.Б.Полынов предложил именовать местным ландшафтом. Разнообразие литологического состава пород, сочетаний почв, форм рельефа, растительных сообществ усложняет принципы классификации местных ландшафтов.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных