Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ОПРЕДЕЛЕНИЕ МАССЫ РАДИОАКТИВНОГО ПРЕПАРАТА




 

Цель работы: познакомиться с явлением радиоактивности, определить массу радиоактивного препарата по его активности.

Оборудование: контейнер с препаратом, счетчик импульсов радиоактивного излучения.

 

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

 

Радиоактивностью называется явление самопроизвольного распада атомных ядер с превращением одних ядер в другие, сопровождаемое испусканием элементарных частиц. Распад испытывают нестабильные ядра. Энергия, выделяющаяся при распаде, очень велика (несколько МэВ) и может быть определена по соотношению Эйнштейна как произведение разности масс покоя исходного ядра и продуктов распада на квадрат скорости света .

Существует несколько видов радиоактивного распада.

При альфа - распаде из ядер вылетают α -частицы. Они обладают двойным положительным элементарным зарядом, а их масса составляет 4 атомных единицы. То есть это ядра гелия, состоящие из двух протонов и двух нейтронов. Испытывают α- распад в основном ядра тяжелых элементов, стоящих в таблице Менделеева за свинцом. Образовавшиеся ядра также могут быть радиоактивными, поэтому возникает цепочка распадов, заканчивающаяся на изотопах свинца и на висмуте. Существует 4 радиоактивных семейства с массовыми числами 4 n, 4 n+ 1 4 n+ 2 4 n+ 3.

Если материнское ядро X испытывает α -распад, то оно превращается в дочернее ядро Y, стоящее в таблице Менделеева на две клеточки ближе к началу, с массовым числом меньше на 4 единицы:

 

. (1)

 

Кинетическая энергия α- частиц принимает дискретные значения, что свидетельствует о дискретности энергетических уровней ядер.

Бета-распад происходит при распаде ядер с вылетом электрона или позитрона. Бывает, что ядро захватывает один из ближайших электронов с электронной оболочки и испытывает β- превращение. Кроме того, при электронном β- распаде из ядра вылетает еще антинейтрино, а при позитронном – нейтрино. Нейтрино – это элементарная частица без электрического заряда, масса покоя которой, возможно, равна нулю. Уравнение, например, электронного распада имеет вид

. (2)

 

При электронном бета-распаде дочернее ядро смещается на одну клеточку к концу таблицы Менделеева, при позитронном распаде – на одну клеточку к началу таблицы. Спектр энергии β- частиц − сплошной, так как некоторую, неопределенную часть энергии уносят нейтрино.

Альфа- и бета-распады сопровождаются гамма-излучением. Это жесткое, коротковолновое электромагнитное излучение с огромной энергией до нескольких МэВ, с большой проникающей способностью. Оно обусловлено излучением дочернего ядра, которое после распада оказалось в возбужденном состоянии, при переходе его в основное состояние.

Получим уравнение закона радиоактивного распада.

Распад ядра – это явление случайное, независимое от других ядер, от внешних воздействий (нагрев, электрические поля). Поэтому, согласно теории вероятности, число распавшихся за небольшой промежуток времени ядер пропорционально времени наблюдения и числу радиоактивных ядер:

. (1)

 

Здесь λ – постоянная распада, имеющая определенное значение для каждого радиоактивного изотопа. Она равна величине, обратной среднему времени жизни радиоактивного ядра. Знак минус показывает, что число нераспавшихся ядер N уменьшается.

Чтобы определить закон уменьшения числа ядер за достаточно большое время, проинтегрируем уравнение (1) по времени от нуля до некоторого момента t: . В результате получим, что число нераспавшихся ядер уменьшается со временем наблюдения от начального числа N 0 по экспоненциальному закону (рис. 1):

 

. (2)

 

Время, в течение которого распадается половина исходного числа ядер, называется периодом полураспада. По этому условию . Откуда получим соотношение . Период полураспада известных ядер находится в пределах от 10–7секунды до 1015 лет. Чем меньше период полураспада, тем выше активность препарата.

Активностью называется число распадов в единицу времени. Из уравнения (1) . Единицей активности является беккерель (Бк), равный одному распаду в секунду.

По известной активности можно определить число радиоактивных ядер и, значит, массу препарата. Число ядер в определенной массе вещества можно установить по закону Авагадро, согласно которому в одном моле любого вещества содержится одинаковое число атомов, равное NA = 6,02 ∙1023 1/моль. Тогда , где M – масса одного моля вещества. Подставив N в формулу активности, получим формулу для расчета массы препарата:

 

. (3)

 

Исследуемый радиоактивный препарат плутония Pu239 небольшой массы находится в свинцовом контейнере установки. Измерение активности производится с помощью счетчика Гейгера, подключенного к пересчетному прибору (рис. 2).

Счетчик Гейгера представляет собой тонкостенную металлическую трубку, наполненную газом при низком давлении. Трубка является катодом, а анодом служит тонкая нить, натянутая по оси трубки. Между ними приложено напряжение 400–1000 В. При пролете внутри трубки γ -фотона, α-, β- частиц, вследствие ионизации молекул газа, возникают электроны и положительные ионы.

Электроны, ускоряясь в сильном электрическом поле около нити, производят вторичную ионизацию молекул. В результате в счетчике возникает лавинный разряд. Чтобы зарегистрировать следующую частицу, разряд следует погасить. Для гашения разряда последовательно со счетчиком включается резистор с большим сопротивлением. В момент разряда на резисторе возникает импульс напряжения, который регистрируется.

Однако не каждая частица, пролетающая через счетчик Гейгера, вызывает лавинный разряд, а только малая доля, менее процента. Это учитывается коэффициентом, который называется эффективностью счетчика ε. Кроме того, радиоактивное излучение изотропно, распространяется в полном телесном угле 4 π стерадиан, а на счетчик Гейгера попадает только часть излучения, равная отношению видимой площади счетчика S к площади сферы с радиусом, равным расстоянию от препарата до счетчика: . Это так называемая геометрическая поправка. Таким образом, скорость счета импульсов в установке меньше активности препарата: . С учетом поправок формула (3) примет вид

 

. (4)

 

Здесь n – число импульсов, зарегистрированных за время счета t, С – постоянная установки.

 

ВЫПОЛНЕНИЕ РАБОТЫ

 

1. Включить пересчетный прибор в сеть 220 В. На индикаторе должно установиться время 10 с. Кнопками «+» и «–» установить время счета импульсов не менее 300 с.

2. Нажать кнопку «Установка». Нажать кнопки «Сброс» и «Пуск», начнется счет времени и числа импульсов. Через установленное время счет остановится.

Повторить измерения не менее трех раз. Записать в табл. 1 число зарегистрированных импульсов n в каждом опыте.

3. Произвести измерения интенсивности фона космического излучения в течение 300 с. Так как контейнер с установки убирать нежелательно, то следует поставить свинцовую пластину в нишу контейнера для отсечения излучения источника. Записать результат в табл. 2.

Выключить установку.

Таблица 1

Число импульсов n      

 

 

4. Произвести расчеты. Определить среднее значение числа зарегистрированных импульсов < n >. Определить число регистрируемых импульсов с вычетом фона. Определить скорость счета импульсов . Рассчитать постоянную установки при следующих значениях величин: М = 239 г/моль, NA = 6,02∙1023 1/моль, Т = 2,44∙104 лет или Т = 7,69∙1011 с, ε = 1,2∙10–2, р = 1,3∙10–2. Записать в табл. 2.

Таблица 2

Фон nф  
Среднее число импульсов < n >  
Число импульсов без фона < n >– nф  
Постоянная установки С, кг∙с  
Масса препарата m, кг  

5. Определить среднее значение массы препарата по скорости счета по формуле

.

 

 

6. Оценить случайную погрешность измерений по формуле , где случайная погрешность прямых измерений числа импульсов равна

. (5)

Здесь k – число опытов.

7. Записать результат m = < mδm, Р=... Сделать выводы.

 

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Дайте определение альфа - распада. Что представляют собой α- частицы? Запишите уравнение распада.

2. Дайте определение бета-распада. Что представляют собой β- частицы? Запишите уравнение электронного или позитронного распада. Почему спектр энергии β- частиц сплошной?

3. Дайте определение гамма-излучения.

4. Выведите уравнение закона радиоактивного распада. Дайте определение периода полураспада, активности препарата.

5. Объясните принцип работы счетчика Гейгера, назначение резистора в схеме включения счетчика. Дайте определение эффективности счетчика.

6. Выведите формулу для расчета массы радиоактивного препарат по измеренной скорости счета импульсов счетчика Гейгера. Объясните смысл геометрической поправки.

 


Работа 47

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных