Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Субстратный подход к проблеме биогенеза




В рамках субстратного подхода было отмечено, что при переходе к простейшим формам жизни шел особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. Эти элементы в химии получили название органогенов.

Результатами такого подхода стала информация об отборе химических элементов и структур, который оказался подобным биологической эволюции. В настоящее время наукой открыто 110 хи-


мических элементов. Большинство из них попадает в живые организмы и участвует в их жизнедеятельности. Однако основу жизнедеятельности обеспечивают только шесть химических элементов-органогенов — углерод, водород, кислород, азот, фосфор и сера. Их суммарная весовая доля в структуре живого организма составляет 97,4%. За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биологических систем (натрий, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель). Их весовая доля в организме составляет 1,6%. Кроме того, существует еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем, весовая доля которых составляет около 1%. Все остальные элементы в построении биосистем практически не участвуют.

Общая химическая картина мира также весьма убедительно свидетельствует об отборе химических соединений. В настоящее время химической науке известно около 8 млн. химических соединений. Из них подавляющее большинство (96%) составляют органические соединения, которые образованы на основе все тех же 6—18 элементов. А из остальных 90 химических элементов природа создала всего лишь около 300 тысяч неорганических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Из 100 известных аминокислот в состав белков входит только 20. Лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Химикам важно понять, каким образом из минимума химических элементов и химических соединений образовались сложнейшие биосистемы. Без этого ученые не смогут приспособить к своим нуждам простые химические системы и получить из них более сложные соединения.

Можно предположить, что определяющими факторами в отборе химических элементов при формировании органических систем, а тем более биосистем, выступают условия соответствия этих элементов определенным требованиям:

• способность образовывать прочные и, следовательно, энергоемкие связи;

• эти связи должны быть лабильными (изменчивыми), способными к образованию новых разнообразных связей.

Данным условиям отвечает углерод — органоген номер один. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реали-зовывать их единство, выступать в качестве носителя внутреннего противоречия.


Азот, фосфор и сера как органогены, а также железо и магний, составляющие активные центры ферментов, также лабильны. Кислород и водород свойством лабильности обладают в меньшей мере, поэтому являются носителями окислительных и восстановительных процессов.

Сегодня также ясно, что в ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Есть уже и некоторые выводы:

• на ранних этапах химической эволюции органического мира катализ отсутствовал. Условия высоких температур (выше 5000 К), электрических разрядов и радиации, с одной стороны, препятствовали образованию конденсированного состояния вещества, а с другой — с лихвой перекрывали те порции энергии, которые необходимы для протекания большинства реакций;

• первые проявления катализа начались при смягчении условий и образовании первичных твердых тел;

• роль катализаторов возрастала по мере того, как физические условия приближались к земным. Но общее значение катализа вплоть до образования более или менее сложных органических молекул все еще не могло быть высоким;

• после того, как был накоплен определенный количественный минимум органических и неорганических соединений, прежде всего Сахаров и аминокислот, роль катализа начала резко возрастать.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных