Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Доставка руды питателями и конвейерами. Условия применения, сравнительная оценка. 5 страница




Карьерные мехлопаты применяются при выемке пород преимущественно в торцовом забое. Торцовым забоем могут отрабатываться сквозная или тупиковая заходки (рис. 3.6). Сквозная заходка целесообразнее, так как позволяет повысить производительность мехлопат и применить сквозные схемы движения транспорта.

Высота забоя (в м) при разработке мягких пород:

максимальная (по условию предупреждения образования нависей и козырьков)

минимальная (по условию наполнения ковша экскаватора за одно черпание)

где Нч mах – максимальная паспортная высота черпания, м;

Нн.в. – высота расположения напорного вала экскаватора, м,

 

Ширина нормальной заходки (в м) при выемке из массива и погрузке породы в автомобильный, железнодорожный или конвейерный транспорт (рис. 3.7)

где Rч.у. — радиус черпания экскаватора на уровне стояния, м.

Узкие заходки (Ау < Ан) могут применяться при автомобильном и железнодорожном транспорте, широкие (Аш > Ан) — при автомобильном.

Разновидностью торцового забоя при проведении траншей мех-лопатой является траншейный забой (рис. 3.8).

 

Размер траншеи по низу устанавливается из условия размещения в ней соответствующих транспортных средств.

Выемка взорванных пород производится карьерными мехлопатами с погрузкой преимущественно в железнодорожный и автомобильный транспорт и реже на конвейеры.

При железнодорожном транспорте развал убирается за один проход экскаватора (рис. 3.9) или за несколько проходов экскаватора, тогда каждому последующему проходу соответствует новое положение пути (рис. 3.10).

При автомобильном транспорте развал отрабатывается нормальными, широкими и узкими продольными и поперечными заходками.

 

 

 

В экскаваторах с гидравлическим приводом (гидравлические экскаваторы) усилие на элементах рабочего оборудования создается гидроцилиндрами и гидродвигателями. Двигатель экскаватора приводит во вращение гидравлический насос, создающий давление рабочей жидкости в напорной магистрали гидросистемы. Через систему гидрораспределителей полости гидроцилиндров (гидродвигателей) соединяются с рабочей или сливной магистралями гидросистемы, что обеспечивает перемещение рабочего оборудования. В нейтральном положении (при запертых полостях гидроцилиндров) положение рабочего оборудования фиксируется. Для транспортировки экскаватора с помощью буксира предусмотрена возможность перевода гидроцилиндра стрелы и гидромотора механизма поворота в нейтральный транспортный («плавающий») режим.

В настоящее время гидравлические экскаваторы имеют преимущественное распространение.

 

Вопрос№87 Технология разработки горных пород вскрышными мехлопатами, драглайнами.

Технология выемки пород драглайнами

Шагающие экскаваторы (драглайны) используются на карьерах для перевалки мягкой вскрыши в выработанное пространство, а также для зачистки невыдержанной кровли пласта полезного ископаемого и в условиях сильной обводненности. Драглайны могут эффективно применяться для разработки песчаных и песчано-гравийных пород в подводных забоях.

В некоторых случаях драглайны с ковшом емкостью до 10 м3 применяются для погрузки горной массы в средства транспорта.

Радиусы черпания Rч и разгрузки, длина стрелы и угол ее наклона к горизонту, радиус черпания на уровне стояния, глубина черпания, высота разгрузки и радиус вращения кузова являются основными рабочими параметрами драглайнов.

Выемка пород драглайнами производится в основном в торцовом забое (рис. 3.11).

 

При выемке пород с перевалкой в выработанное пространство драглайн может располагаться на кровле уступа (нижнее черпание, рис. 3.12, а), на подошве уступа (верхнее черпание, рис. 3.12, б) и на промежуточной площадке (нижнее и верхнее черпание, рис. 3.12, в).

 

 

Вскрышные мехлопаты от карьерных отличаются большими линейными параметрами и большей емкостью ковша, что позволяет применять вскрышные экскаваторы для разработки покрывающих пород и перевалки их в выработанное пространство. Существенную роль при этом играет максимальный радиус разгрузки. Вскрышные мехлопаты могут использоваться для верхней погрузки горной массы.

 

Вопрос№88. Выемка пород машинами непрерывного действия.

Цепные многоковшовые экскаваторы выпускаются на гусеничном (марка Rs) и рельсовом (марка Ds) ходах.

Удельное давление на грунт у многоковшовых цепных экскаваторов на рельсовом ходу изменяется от 13,8-105 до 18,9-105 Па, а удельное давление на грунт у многоковшовых экскаваторов на гусеничном ходу — от 1,25-105 до 1,5-105 Па.

Многоковшовые цепные экскаваторы выпускаются с верхним или нижним черпанием (рис. 3.13).

Многоковшовые цепные экскаваторы наиболее успешно применяются для отработки пород без твердых включений.

Неповоротные экскаваторы на железнодорожном ходу работают только в продольном забое; поворотные экскаваторы на гусеничном ходу могут работать и в торцовом забое.

В продольном забое выемка породы производится параллельными (рис. 3.14, а, б) или треугольными (рис. 3.14, в, г) стружками. Продольная стружка (ее толщина) образуется при движении ковшовой цепи по откосу уступа и при перемещении экскаватора вдоль уступа (рис. 3.15).

В торцовом забое выемка породы производится многорядными серповидными стружками во время поворота экскаватора вокруг своей оси.

 

Роторные экскаваторы работают в комплексе с системой конвейеров (забойных, подъемных, магистральных) и отвалообразователями. Это сочетание называется комплексом горнотранспортного оборудования непрерывного действия.

Выемка пород роторным экскаватором может производиться в торцовом и реже продольном забоях (например, при раздельной выемке) вертикальными (однорядными и многорядными) и горизонтальными стружками, а также комбинированными (рис. 3.16).

 

Вопрос№89. Применение автотранспорта на карьрерах.

 

. Перевозка карьерных грузов автомобильным транспортом

Общие сведения. Автомобильный транспорт на карьерах получил значительное распространение. Этому способствовали такие его свойства, как гибкость, маневренность, способность работать в стесненных и разнообразных климатических условиях, высокие эксплуатационные показатели, способность преодолевать с грузом значительные подъемы и др.

Автотранспорт применяется главным образом на карьерах малой и средней производственной мощности с грузооборотом до 10 млн. т в год. С увеличением грузоподъемности автосамосвалы целесообразно будет использовать на карьерах с грузооборотом до 70 млн. т в год.

Отсутствие рельсовых путей и контактной сети упрощает организацию основных и вспомогательных работ на уступах карьера и отвалах. По сравнению с железнодорожным транспортом при автотранспорте производительность экскаваторов (при условии непрерывной подачи машин под погрузку) возрастает на 20 – 25 %. Существенно упрощается организация и уменьшаются затраты на отвальные работы.

К недостаткам автотранспорта относятся незначительная (до 3 – 4 – 7 км) экономически целесообразная дальность транспортирования грузов, высокая интенсивность движения и загазованность воздуха, увеличивающаяся с глубиной карьера, большой парк машин, водителей и обслуживающего персонала и связанные с этим значительные эксплуатационные расходы, высокие затраты на топливо и смазочные материалы, незначительный срок службы и быстрый износ двигателя, резины и некоторых важных узлов и деталей особенно при эксплуатации на дорогах с плохим покрытием и др.

Технологическая характеристика подвижного состава и карьерных дорог. Подвижной состав автомобильного транспорта — автосамосвалы, колесные тягачи с прицепами и полуприцепами, троллейвозы, дизель-троллейвозы и дизель-электрические карьерные автопоезда.

Из средств автомобильного транспорта на карьерах применяются автосамосвалы разной грузоподъемности марки – КрАЗ, БелАЗ, Катерпиллер, Камацу и др.

С увеличением грузоподъемности значительно уменьшается удельная себестоимость автотранспорта (затраты на перевозку 1 т груза на расстояние 1 км) и увеличивается производительность экскаваторов.

Грузоподъемность и геометрическая емкость кузова автосамосвала, а также коэффициент тары, скорость движения, длина тормозного пути и расход горючего являются технологическими характеристиками автотранспорта.

Минимальная ширина проезжей части (рис.5.6) и радиусы поворота для автосамосвалов рассчитываются из их параметров. При длине 7,2 – 9,6 м и ширине 3,5 – 4,9 м автосамосвала радиусы поворота составляют 8,4 – 9,5 м.

Радиусы закругления горизонтальных кривых дорог по условию плавности движения по ним с расчетной скоростью 50 км/ч составляют 100 м, 40 км/ч – 60 м, 30 км/ч – 30 м, 15 – 20 км/ч – 15 м. Обычно радиусы закруглений горизонтальных кривых имеют большие значения и для перечисленных выше скоростей движения соответственно равны 200, 100, 60 и 30 м. Тип дорожного покрытия выбирается исходя из предполагаемого срока службы дороги, объемов перевозок, вида автотранспорта, обеспеченности строительными материалами, состояния, свойств и обводненности подстилающих пород и других факторов.

Вопрос№90. Перевозка горной массы железнодорожным транспортом.

 

Перевозка карьерных грузов железнодорожным транспортом

Общие сведения. Железнодорожный транспорт на современных карьерах получил преимущественное распространение. Этому способствовали такие его достоинства, как возможность использования и сравнительно небольшой расход различных видов энергии, высокая прочность и относительно большой срок службы подвижного состава, возможность транспортирования горной массы на значительные расстояния, независимость работы от климатических условий и т. д.

Вместе с тем эксплуатация железнодорожного транспорта связана с большой длиной и большим объемом наклонных траншей, большой протяженностью фронта работ на уступе и значительными (более 100 м) радиусами кривых, большими капитальными затратами, сложной схемой путевого развития в карьере, на поверхности и на отвалах. Для увеличения преодолеваемых уклонов и сокращения объемов наклонных капитальных траншей применяются моторные думпкары (вагоны-самосвалы, оборудованные тяговыми электродвигателями). Увеличение сцепного веса моторных думпкаров позволяет преодолевать подъемы, достигающие 100 °/оо.

Отечественная промышленность выпускает думпкары 4ВС-50, 5ВС-60, ВС-100, ВС-105, ВС-140. На ряде карьеров проходят промышленные испытания думпкары ВС-180 (вагон-самосвал грузоподъемностью 180 т).

Основными параметрами карьерных вагонов являются: грузоподъемность, вместимость кузова, коэффициент тары, число осей, давление на ось, нагрузка на 1 м пути, радиус вписывания в кривые и линейные размеры.

Для эффективной работы экскаваторов, а также для обеспечения прочности и правильной загрузки вместимость кузова вагона V должна быть в 4 – 6 раз больше емкости ковша экскаватора E.

В качестве локомотивов на карьерах применяют электровозы, тепловозы.

Сцепной вес локомотива — часть его веса, приходящаяся на движущие оси. Сцепной вес, мощность, сила тяги, назначение осей и давление на ось являются главными характеристиками локомотивов.

Электровозы EL-2 и EL-1 выпускаются предприятиями ГДР, 13Е-1 и 21 Е-1 – предприятиями ЧССР. В настоящее время на крупных карьерах наиболее распространены электровозы постоянного тока.

Отечественной промышленностью выпускаются следующие тепловозы: ТГМ-3, ТЭМ-1, ТЭМ-2 и ТЭ-3.

Преимуществом тепловозов перед электровозами является независимость от источников питания, что особо важно для забойных и отвальных путей, перемещающихся в процессе работы.

Основным параметром железнодорожного пути является ширина колеи. Колея в плане состоит из прямолинейных и криволинейных, а в профиле – из горизонтальных и наклонных участков.

На карьерах принята стандартная для всех путей колея шириной 1524 мм. На карьерах с небольшим грузооборотом может применяться колея шириной 750 мм, иногда 900 и 1000 мм.

Нормальный радиус закругления для колеи шириной 1524 мм равен 200 м.

Пропускная и провозная способность карьерных железных дорог. Пропускная способность железных дорог характеризуется наибольшим числом поездов, которое может быть пропущено в обоих направлениях по участку пути в единицу времени (час, смену, сутки). Количество груза, перевезенное в единицу времени данным числом поездов, определяет – провозную способность карьерных железных дорог.

При проектировании карьеров схемы путевого развития рассчитывают по пропускной и провозной способностям и выбирают ту из них, которая удовлетворяет заданной величине грузооборота карьера. Грузооборот карьера — количество груза, вывозимое из карьера в единицу времени.

Пропускная и провозная способности рассчитываются для перегонов главных путей, для путей на уступе, для станций и для траншейных путей.

Обычно определенному участку карьерных железных дорог соответствует наименьшая (в сравнении с другими участками) пропускная способность. Этот участок дороги (перегон) носит название ограничивающего. Чаще всего в карьере им является участок пути в капитальной траншее, так как здесь сосредоточиваются грузы со всех уступов.

Провозная способность карьерных железных дорог рассчитывается по пропускной способности ограничивающего перегона.

Количество горной массы (в т или м3), фактически вывезенное железнодорожным транспортом в единицу времени, соответствует эксплуатационной производительности локомотивосостава.

Путевое развитие и обмен поездов. Организация движения поездов. Развитие сети карьерных железных дорог зависит в первую очередь от формы и глубины залегания полезного ископаемого, рельефа местности, мощности и числа грузопотоков, способа вскрытия и системы разработки и других факторов.

В зависимости от места расположения и назначения различают забойные и отвальные (временные пути) соединительные пути, связывающие пути на уступах и на отвалах с путями в капитальных траншеях, пути капитальных траншей и магистральные пути, соединяющие карьер с путями МПС (рис. 5.1).

Для обеспечения безопасного движения поездов и увеличения их пропускной и провозной способности сеть карьерных железных дорог с помощью раздельных пунктов разбивается на перегоны.

Данные перегоны могут разделяться с помощью светофоров или семафоров на блок-участки.

Раздельные пункты служат не только для разделения сети дорог на перегоны, но и для обмена поездов (станции, разъезды) или для изменения направления и интенсивности движения (путевые посты).

Схема путевого развития породной станции приведена на рис. 5.2.

Назначение разъездов — скрещение и обгон поездов, обмен поездов в забоях и на отвалах. Разъезды, служащие для обмена поездов, называются обменными пунктами (ОП). Конструкция простейшего разъезда и его параметры приведены на рис. 5.3.

 

Обмен поездов на уступах зависит от схемы движения (сквозное, тупиковое), числа работающих экскаваторов и транспортных выходов и длины фронта работ уступа. На рис. 5.4 приведены схемы путевого развития на уступе при одном работающем экскаваторе и сквозной (рис. 5.4, а) и тупиковой (рис. 5.4, б) схемах движения. Показателем, характеризующим эффективность схемы путевого развития на уступе, является коэффициент обеспечения забоя порожняком.

Состав и технология путевых работ. В состав путевых работ входят возведение и планировка земляного полотна, укладка и перемещение путей, балластировка и очистка шпальных ящиков, текущее содержание и ремонт пути, а также работы, связанные с монтажом и текущим содержанием контактной сети. Наиболее трудоемкие из путевых работ — текущее содержание и перемещение временных путей в забоях и на отвалах.

Важным этапом механизации путевых работ на карьерах является применение звеносборочных агрегатов и последующая укладка рельсошпальных решеток с помощью путеукладочных кранов, рельсоукладчиков для укладки отдельных элементов звеньев, тракторных путеукладчиков, а также путеукладочных поездов.

Комплекс работ по балластировке путей выполняется с помощью вагонов-дозаторов и средств малой механизации: специальных балластировщиков; путепередвигателей цикличного действия; гидравлических тракторных дозировщиков и путеподъемников; специальных рихтовочных машин; электрических и самоходных шпалоподбивочных машин.

Перенос временных путей и их укладка на новую трассу могут осуществляться без разборки на звенья непрерывно или циклически с помощью специальных путепередвигателей или отдельными звеньями с помощью одноковшовых экскаваторов или кранов. Цикличная передвижка путей на карьерах осуществляется с помощью путепередвигателей ПП-3, ПУ-25, ПУ-26 и ПУ-30. Обычно шаг передвижки составляет 2,5 – 4 м.

На карьерах с мягкими породами при использовании на выемке многоковшовых цепных экскаваторов применяются путепередвига-тели непрерывного действия (ПНД-1 и др.) и турнодозеры (на базе тракторов Т-100, Т-140, Т-180 и др.).

Широкое распространение на карьерах получила крановая переукладка железнодорожных путей. Шаг переукладки пути не превышает радиуса действия крана.

В состав текущего содержания пути входят работы по проверке и очистке пути и путевых устройств, канав и кюветов, смену вышедших из строя шпал, рельсов и др.

В зимнее время на карьерах производятся работы по снегозащите и снегоочистке железнодорожного пути.

ОТВЕТЫ НА ВОПРОСЫ ПО ОРМТПИ:

121. Принципиальные схемы разработки необводненных серных месторождений.

Принципиальная схема разработки необводненных серных залежей методом ПСС с производством серной кислоты на базе газов сжигания

122. Технология подземного выщелачивания урана из рудных залежей.

Технология подземного выщелачивания разрабатывалась независимо в СССР и США в середине 1970-х годов. Метод был предназначен для извлечения урана из типичных месторождений роллового типа (подвид урановых месторождений песчаникового типа), расположенных в водонасыщенных проницаемых породах, в которых нельзя было использовать обычные способы добычи. В обеих странах метод ПСВ разрабатывался на основе схожих инженерных и технологических подходов. Однако в Советском Союзе использовали кислотное выщелачивание, а в США — щелочные системы (в основном на основе карбонатов). Выбор технологии зависит от геологии месторождения и гидрогеологических условий. При наличии в рудной зоне значительного количества кальция должно применяться щелочное (карбонатное) выщелачивание.

Технология ПСВ на сегодняшний день хорошо развита и является контролируемым, безопасным и экологически приемлемым методом добычи, который можно применять даже при самых строгих нормативах охраны окружающей среды и который часто имеет экономические преимущества.

123. Сущность геотермальной технологии.

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

Суть этой технологии заключается в следующем

До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара из подземных резервуаров и источников. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для создания такого гейзера австралийские геофизики отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. По оценкам австралийских геологов, залегающие на глубине 4,5 км гранитные породы разогреваются до 270°С, и поэтому если на такую глубину через скважину закачать под большим давлением воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой, в свою очередь, и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл таким образом повторится.

1124. Классификация комбинированных способов разработки (по Щелканову В.А., по Юматову В.П.)

Таблица1.1 - Классификация способов комбинированной разработки по В.А.Щелканову

Совмещение открытых и подземных горных работ Использование технических возможностей месторождений Степень технологической взаимосвязи открытых и подземных работ и характер их воздействия на технико-экономические показатели
Во времени В пространстве Технолог взаимосвязь Характер воздействия
I. С полным совмещением (одноременная разработка) I. С совмещ в вертикальной плоскости полное тесная благоприятный
II. С совмещ. в гориз. плоск. среднее
II. С частичным совмещением (последовательно-параллельная разработка) III. С частичным совмещ в горизонтальной и вертикальной плоскостях слабое средняя неблагоприятный
III. Без совмещения (последовательная рзработка)   слабая нейтральный

 

125. Технологические схемы комбинированной разработки.

В комбинированном способе вскрытия месторождения сочетается несколько простых способов. Это вызвано тем, что при разработке месторождений на большой глубине или при изменяющихся условиях залегания рудного тела в различных частях месторождения применение какого-либо одного простого способа вскрытия не может обеспечить необходимую производственную мощность предприятия.
Иногда комбинированный способ вскрытия применяется вынужденно, когда были допущены ошибки в первоначальном выборе способа вскрытия, например, из-за недостаточной разведанности месторождения.
Однако комбинированные способы вскрытия имеют ряд недостатков. Прежде всего возникает необходимость в проведении и обслуживании нескольких вскрывающих выработок. Ступенчатый подъем приводит к многократным перегрузкам полезного ископаемого. Спуск и подъем людей, материалов и оборудования при комбинированных способах вскрытия значительно усложняется.
Рассмотрим несколько схем комбинированного вскрытия.
Схема вскрытия вертикальным шахтным стволом с поверхности с переходом в вертикальный слепой ствол (ступенчатое вскрытие).
При такой схеме вскрытия уменьшается длина квершлагов, особенно на нижних горизонтах. Ступенчатое вскрытие позволяет повысить производительность подъема из-за уменьшения глубины подъемных стволов. Заметим, что при большой глубине стволов собственная масса подъемных канатов очень велика, что затрудняет работу подъема, а иногда и делает ее экономически невыгодной.
Вскрытие вертикальным шахтным стволом с поверхности с переходом в наклонный слепой ствол применяется при разработке глубокозалегающих месторождений, меняющих с глубиной угол падения. Такая схема вскрытия позволяет значительно сократить длину квершлагов на нижних горизонтах.
Вскрытие штольней с переходом на слепые вертикальные или наклонные стволы применяется в том случае, когда возникает необходимость в отработке части залежи, расположенной ниже уровня штольни. Выбор вертикального или наклонного слепого ствола определяется в основном условиями залегания месторождения.

126. Особенности вскрытия месторождения при комбинированной разработке месторождений.

Различают простые и сложные (комбинированные) способы вскрытия. Отличительная особенность простых способов вскрытия заключается в том, что вскрытие шахтного поля производится главной вскрывающей выработкой на всю глубину разработки месторождения. При комбинированных способах вскрытие осуществляется главной вскрывающей выработкой в сочетании с вспомогательными.
С учетом вышеизложенного классификация способов вскрытия по роду вскрывающих выработок представляется следующим образом:
Простые способы вскрытия:
вертикальным шахтным стволом;
наклонным шахтным стволом;
штольней.
Комбинированные способы вскрытия:
вертикальным шахтным стволом с поверхности с переходом в вертикальный слепой ствол;
вертикальным шахтным стволом с поверхности с переходом в наклонный шахтный ствол;
наклонным шахтным стволом с поверхности с переходом в наклонные слепые стволы;
штольней с переходом в вертикальные слепые стволы;
штольней с переходом в наклонные слепые стволы.

127. Варианты совмещения открытых и подземных горных работ во времени.

 


 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных