Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теория атома Нильса Бора




Успеха в построении теории атома добился в 1913 году молодой датский физик Нильс Бор (1885—1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию альфа-частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики.

Можно взять за основу модель атома Резерфорда, но дополнить ее новыми гипотезами, которые не следуют или даже противоречат классическим представ-лениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенным орбитам, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. Электрон способен перескакивать с одной стационарной орбиты на другую, и только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота определяется величиной изменения энергии атома при таком перескоке в согласии с теорией Планка.

Большим успехом теории Бора было объяснение спектра водорода. Прямым ее подтверждением были результаты опытов Франка и Герца по исследованию возбуждения и ионизации паров ртути ударами электронов, проделанных в 1914 году В опытах Франка и Герца было показано, что удары электронов об атомы ртути, если энергия первых меньше некоторого критического значения являются упругими. Когда же их энергия достигает этого значения, то удары становятся неупругими, энергия электронов полностью передается атомам ртути, они возбуждаются и начинают излучать. При дальнейшем увеличении энергии электронов удары опять становятся упругими, и только при достижении определенных значений энергия во время соударения вновь целиком передается атомам ртути, которые, возбуждаясь, излучают определенные спектральные частоты. Опыты, проведенные с другими элементами, показали, что и для них наблюдалась такая же закономерность. При соударении электронов с атомами последние способны воспринимать только определенные количества энергии Е и излучать определенные частоты.

Дальнейшее развитие теории Бора происходило прежде всего в направлении поисков более общих условий, определяющих стационарные состояния атомов.

В 1915 году независимо друг от друга Зоммерфельд и Вильсон ввели более общие квантовые условия, которые были применены к атому водорода. Дальнейшее обобщение этих условий было проведено Шварцшильдом и Эпштейном. Использование более общих условий квантования позволило более точно рассчитать энергетические уровни атома водорода с учетом эллиптических орбит электрона и даже релятивистских поправок, а также рассчитать энергетический спектр атома водорода в магнитном и электрических полях.

Важным достижением квантовой теории Бора было также развитие им и другими исследователями представления о строении многоэлектронных атомов. При этом они опирались на периодический закон Менделеева и химические свойства элементов, а также использовали идею о слоистом строении атомов, заимствованную у Дж. Дж. Томсона. Впервые в развитом виде теорию строения атомов Бор изложил в 1921 году в докладе «Строение атомов в связи с физическими и химическими свойствами элементов», прочитанном им в Копенгагене; затем она совершенствовалась в его последующих работах и работах других ученых.

Дальнейшие исследования строения атома пошли по линии уточнения формы и взаимной ориентации электронных орбит и введения новых соответствующих квантовых чисел для состояний как отдельных электронов в атоме, так и состояния атома в целом.

1925 году немецкий физик Паули (1900—1958) сделал новый шаг в развитии как теории строения атома, так и квантовой теории вообще. Исследуя дублетный характер спектров щелочных металлов, а также аномальный эффект Зеемана, Паули высказал мысль, что их можно объяснить, если приписать самому электрону некоторую «двузначность», т. е. что электрон на орбите может находиться в двух состояниях. Что означает, однако, «двузначность» — этот вопрос Паули не был склонен рассматривать более подробно и предлагать для ее объяснения какую-либо модель.

Но уже в том же 1925 году американский физик Крониг, узнав об идеях Паули, высказал предположение, что эта «двузначность» является результатом того, что самому электрону нужно приписать момент импульса и соответственный магнитный момент. Соображения Кронига не встретили поддержки ни у Паули, ни у ряда других ведущих теоретиков. Против гипотезы о вращении электрона можно было высказать много возражений, и она, казалось, не могла быть принята. Однако также в 1925 году независимо от Кронига голландские физики Уленбек и Гаудсмит пришли к аналогичному заключению о собственном моменте импульса электрона, который объяснялся вращением самого электрона вокруг своей оси. Их работа вызвала интерес и, хотя вскоре было выяснено, что представление о вращающемся электроне не может быть сохранено, тем не менее, представление о спине электрона твердо вошло в физику.

Почти одновременно с гипотезой о «двузначности» электрона Паули высказал важное предположение, касающееся вопроса заполнения оболочек в атоме, известное как принцип Паули. Как выяснилось в конце концов, для характеристики состояния электрона в атоме необходимо четыре квантовых числа. Согласно принципу Паули, в атоме не может быть двух или более электронов, для которых значения всех четырех квантовых чисел одинаковы. Принцип Паули проливал новый свет на теорию строения атома. Теперь стало понятным предположение Бора о последовательном заполнении электронных оболочек многоэлектронных атомов.


Введение четырех квантовых чисел, установление принципа Паули и объяснение периодической системы Менделеева – новые большие успехи теории атома Бора. Однако они по-прежнему не означали, что теорию можно считать удовлетворительной.

Во-первых, сами постулаты Бора имели характер непонятных, ниоткуда не следуемых утверждений, которые должны были бы получить свое обоснование.

Во-вторых, помимо основных постулатов теория содержала ряд других принципов: условия квантования, принцип соответствия, принцип Паули и т. д. Все они также нуждались в обосновании.

Наконец, теория дала многое для выяснения строения атома и атомных спектров и т. д., однако никакие попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных