Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Краткое теоретическое введение




 

1. Индуктивность контура. Явление самоиндукции.

 

Вокруг любого проводника с током I существует магнитное поле.

Собственное магнитное поле контура с током создает магнитный поток самоиндукции через воображаемую поверхность S, ограниченную этим контуром:

, (1)

где - проекция вектора индукции магнитного поля тока I на нормаль к элементу поверхности dS.

Из закона Био-Савара-Лапласа и принципа суперпозиции следует, что эта проекция равна

где - вектор индукции магнитного поля, созданного элементом замкнутого контура Г с током I в точке, местоположение которой относительно определяется радиус - вектором .

Подставляя выражение для в формулу (1) и вынося из-под знака интеграла постоянные, получим

(2)

или

.

Коэффициент пропорциональности между собственным потоком вектора магнитной индукции через поверхность, ограниченную контуром, и силой тока в этом контуре называется индуктивностью контура (коэффициентом самоиндукции).

Из формулы (2) следует, что индуктивность контура зависит только от геометрических размеров, формы контура и магнитной проницаемости той среды, в которой он находится.

Единица индуктивности в СИ называется Генри (Г):

Для бесконечно длинного соленоида, витки которого плотно прилегают друг к другу и сделаны из проводника с очень малым поперечным сечением, индуктивность выражается следующей формулой:

, (3)

где - плотность намотки витков соленоида, - объем соленоида, - магнитная проницаемость вещества сердечника.

Если сила тока, протекающего по контуру, изменяется со временем, то в соответствии с законом Фарадея, в контуре наводится ЭДС самоиндукции :

Если контур с током не деформируется и магнитная проницаемость среды не изменяется (нет ферромагнетиков в магнитном поле контура), то и

. (4)

По правилу Ленца ЭДС самоиндукции противодействует изменению тока в контуре, замедляя как его возрастание, так и убывание.

 

2. Закон изменения тока в цепи при подключении и отключении источника, его применение для определения индуктивности.

 

Найдем изменение тока в цепи, индуктивность которой равна , а активное сопротивление - .

Если внешнее магнитное поле отсутствует или постоянно, а контур неподвижен, то индукционные явления обусловлены только самоиндукцией.

Из закона Ома для замкнутой цепи, в которой действует источник ЭДС , а общее активное сопротивление , сила тока равна

Для нахождения зависимости силы тока от времени разделим переменные:

.

Полагая постоянными интегрируя, получаем:

 

где - постоянная интегрирования, значение которой определяется начальными условиями решаемой задачи.

Пусть в момент времени сила тока . Тогда

Выразив силу тока, получим

(5)

Из этой общей формулы можно получить зависимость силы тока от времени при замыкании цепи. В этом случае начальный ток равен нулю и выражение (5) приобретает вид:

(6)

Из этой формулы видно, что сила тока при замыкании цепи постепенно увеличивается, стремясь к , соответствующей величине постоянного тока (Рис. 1). Нарастание тока происходит тем медленнее, чем меньше отношение в показателе степени экспоненты или больше обратное отношение , физический смысл которого обсуждается ниже.

Если же в момент времени при силе тока источник ЭДС отключить () сохранив замкнутость цепи, то из формулы (5) получим следующую зависимость силы тока от времени:

(7)

В этом случае сила тока в цепи постепенно уменьшается от начального значения , стремясь к нулю. При этом за время (время релаксации) сила тока изменяется в раз.

 

 

Рис. 1

 

Из сказанного ясно, что, измерив силу токов в некоторые моменты времени , и зная, кроме того, величину активного сопротивления , можно с помощью зависимостей (6) или (7) определить индуктивность контура

Особенно просто определить индуктивность, измерив время релаксации:

 

(8)

 

3. Вынужденные электромагнитные колебания в контуре, их применение для измерения индуктивности.

 

Рассмотрим контур, состоящий из последовательно соединенных конденсатора емкостью , активного сопротивления и соленоида индуктивностью .

Для получения незатухающих электромагнитных колебаний необходимо включить в контур источник тока с периодически изменяющейся ЭДС (Рис.2).

Рис.2

В этом случае колебания в контуре являются вынужденными.

Пусть, внешняя ЭДС изменяется по гармоническому закону

.

Тогда, используя закон Ома, можно получить следующее дифференциальное уравнение вынужденных электромагнитных колебаний

и, решив это уравнение, получить для установившихся вынужденных колебаний следующую связь амплитудных значений силы тока и внешней ЭДС:

(9)

где величина называется полным сопротивлением электрической цепи переменного тока.

В нее входят активное сопротивление , емкостное сопротивление и индуктивное сопротивление .

Если электрическая емкость контура стремится к бесконечности , то есть емкостное сопротивление к нулю, то формула (9) упрощается:

(10)

Используя это выражение, получим рабочую формулу для экспериментального определения индуктивности соленоида. При этом учтем, что амплитуда падения напряжения на активном сопротивлении R связана с амплитудой силы тока в цепи формулой

(11)

Из выражений (10) и (11) получим

(12)

 

Схемы измерений

 

 

 

Рис.3

 

 

 

Рис.4

 

Задание к работе.

 

1. Подключите последовательно соединенные резистор и одну из катушек индуктивности без ферромагнитного сердечника к генератору прямоугольных импульсов (Рис. 3).

2. Подключите "Y"-вход осциллографа к концам резистора . Получите на экране устойчивую картину изменения падения напряжения на этом сопротивлении от времени, подобную изображенной на Рис.1.

3. Зная время развертки осциллографа, определите время релаксации , а затем, по формуле (8), вычислите величину индуктивности .

4. Повторите измерения , подключая другие резисторы. Проверьте, зависят ли получаемые значения индуктивности от сопротивления, т.е. от силы тока через соленоид.

5. Измерьте тем же способом индуктивность второго соленоида .

6. Приступите к измерению индуктивности вторым способом. Для этого подключите последовательно соединенные резистор и катушку индуктивности без ферромагнитного сердечника к звуковому генератору (Рис. 4), установив на нем некоторые значения частоты и амплитуды сигнала.

7. С помощью осциллографа измерьте амплитудное значение падения напряжения на резисторе .

8. Отключите осциллограф от концов резистора, а звуковой генератор от RL -контура и, не изменяя величину его сигнала, измерьте с помощью осциллографа амплитудное значение ЭДС генератора .

9. Вычислите индуктивность по формуле (12).

10. Измерьте тем же способом индуктивность второго соленоида .

11. Определите индуктивность, установив другие значения величин . Проверьте, влияют ли эти параметры на индуктивность соленоида.

12. Сравните результаты измерения индуктивностей L 1 и L 2 двумя способами.

 

Контрольные вопросы

 

1. В чем состоит явление электромагнитной индукции?

2. Сформулируйте закон Фарадея и правило Ленца для электромагнитной индукции.

3. Объясните физическую причину появления индукционного тока в неподвижном контуре, помещенном в переменное магнитное поле.

4. Найдите выражение для ЭДС индукции и индукционного тока в плоском витке, равномерно вращающемся в однородном, стационарном магнитном поле.

5. В чем состоит явление самоиндукции и взаимной индукции? Напишите выражение для ЭДС индукции в обоих случаях.

6. Что называется индуктивностью контура и взаимной индуктивностью двух контуров? От чего они зависят?

7. Как определить индуктивность контура путем подключения и отключения внешнего источника ЭДС.

8. Объясните физический смысл времени релаксации. Как, измерив это время, определить индуктивность соленоида?

9. Получите формулу для определения индуктивности соленоида через измеренные значения силы тока и в соответствующие моменты времени и при его подключении или отключении.

10. Как, используя вынужденные электромагнитные колебания, осуществить измерение индуктивности соленоида? Получите соответствующую формулу.

 

Список литературы

 

1. Яворский Б.М., Детлаф А.А., Милковская Л.Б. Курс физики: учеб.: т. 2: Электричество и магнетизм. - М.: Высшая школа, 1964.- 431с.

2. Савельев И.В. Курс общей физики: учеб.: т. 2: Электричество и магнетизм. Волны. Оптика. - М.: Наука, 1978. - 480с. и последующие издания этого курса.

 

Лабораторная работа № 16

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных