Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Факторы, определяющие направление протекания химиче­ских реакций.




В предыдущих параграфах мы рассмотрели не­сколько примеров, показывающих, что при определенных условиях каждая химическая реакция самопроизвольно протекает в опреде­ленном направлении. Так, при низких температурах экзотермиче­ская реакция образования парообразной воды

2 + О2 = 2Н2О+ 483,6 кДж

практически нацело протекает в прямом направлении. В отсутствие катализатора скорость этой реакции при обычных условиях крайне мала. Однако, при наличии катализатора (например, платинированного асбеста) процесс образования воды протекает с большой скоростью.

Но при высоких температурах эта реакция начинает идти в обратном на­правлении: водяной пар разлагается на водород и кислород. Во всех случаях в результате реакции может быть достигнуто состоя­ние устойчивого химического равновесия, но само положение рав­новесия при разных условиях оказывается различным.

Возникает вопрос: в чем причина определенной направленности химических процессов, какие факторы обусловливают то или иное состояние химического равновесия?

Известно, что в механических системах устойчивое равновесие соответствует минимуму потенциальной энергии системы. Так, ша­рик самопроизвольно скатывается из положения а на наклонной поверхности (рис. 69), причем его потенциальная энергия перехо­дит сначала в кинетическую энергию движения шарика как целого, а затем в энергию теплового движения молекул. В положении б шарик находится в равновесии.

Естественно предположить, что и химические процессы должны самопроизвольно протекать в направлении уменьшения внутрен­ней энергии системы, т. е. в направлении, отвечающем положи­тельному тепловому эффекту реакции. Действительно, опыт пока­зывает, что при обычных условиях самопроизвольно протекают преимущественно экзотермические реакции.

Однако попытка объяснить направленность химических процес­сов только стремлением к минимуму внутренней энергии приводит к противоречиям с фактами. Так, уже при обычных температурах самопроизвольно протекают эндотермические процессы растворе­ния многих солей и некоторые эндотермические химические реак­ции.

 

Рис. 69. Шарик самопроизвольно скатывается из положения а в положение б.

 

 


 

Рис. 70. Сосуд, состоящий из дзух частей: в части А находится разреженный газ, в части Б — вакуум.    


С повышением температуры все большее число реакций начи­нает самопроизвольно протекать в направлении эндотермического процесса; примерами таких реакций могут служить упомянутое выше разложение воды или протекающий при высоких температу­рах синтез оксида азота(II):

0,5 N2 + 0,5 O2 = NO - 90,4 кДж

Более того, принцип стремления к минимуму внутренней энер­гии требует, чтобы все экзотермические реакции доходили до конца, т. е. исключает возможность обратимых реакций; однако та­кие реакции реально существуют.

Вспомним теперь, что среди механических систем имеются та­кие, поведение которых тоже нельзя описать только направлен­ностью процессов к достижению минимума потенциальной энергии. Это системы, состоящие из очень большого числа частиц. Напри­мер, молекулы, входящие в состав воздуха, распределяются вокруг Земли в виде атмосферы многокилометровой толщины, но не па­дают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение.

Из громадного числа частиц состоят и химические системы. Поэтому неудивительно, что и здесь тенденция к достижению ми­нимума внутренней энергии не является единственным фактором, определяющим их поведение.

Для того чтобы составить представление о втором факторе, влияющем на направление реакций, рассмотрим какой-либо само­произвольно протекающий процесс, не сопровождающийся тепло­вым эффектом. Примером такого процесса может служить расши­рение разреженного газа.

Пусть в части А сосуда, разделенного на две части (рис. 70), находится разреженный газ. В таком газе среднее расстояние между молекулами велико; при этом условии внутренняя энергия газа не зависит от степени его разрежения. Вторая половина со­суда (Б) газа не содержит. Если открыть кран, соединяющий обе части сосуда, то газ самопроизвольно распространится по всему сосуду. Внутренняя энергия газа при этом не изменится; тем не менее, самопроизвольно произойдет именно процесс расширения газа, а обратный процесс — самопроизвольное сжатие газа — не происходит.

Причины такой направленности процесса можно понять, если сначала рассмотреть систему, содержащую небольшое число моле­кул. Пусть в сосуде находятся всего две молекулы, которые обо­значим 1 и 2. Равномерное распределение газа между обеими частями сосуда, соответствующее определенному макросостоянию газа (Макросостояние — состояние вещества, характеризующееся опреде­ленными значениями его макроскопических свойств (температура, давление, объем и т. д.); микросостояние — состояние вещества, характеризующееся определенным состоянием каждой частицы (молекулы, атомы). Одно и то же макросостояние соответствует большому числу различных микросостояний) может осуществиться двумя м икросостояниями:

А Б
   
   

 

 

Макросостояние, при котором весь газ сосредоточен в одной из частей сосуда (например, в части А), осуществляется единствен­ным микросостоянием:

 

А Б
1,2 -

 

Очевидно, что то или иное макросостояние системы тем более вероятно,

чем большим числом микросостояний оно может осу­ществиться.

В рассматриваемом случае (две молекулы) равномер­ное распределение

газа по сосуду вдвое вероятнее, чем переход всего газа в часть сосуда А.

Пусть теперь в сосуде находится четыре молекулы, которые мы вновь

пронумеруем. Переходу всего газа в часть сосуда А по-прежнему

соответствует единственное микросостояние:

 

А Б
1,2,3,4 -

 

Между тем, равномерное распределение газа между обеими частями сосуда может теперь осуществляться шестью различными микросостояниями:

 

А Б А Б А Б
  1,2   1,3 3,4 2,4   1,4 2,3 2,3 1,4   2,4 3,4 1,3 1,2

Теперь, следовательно, вероятность равномерного распределения молекул газа по всему объему сосуда оказывается заметно более высокой, чем вероятность их перехода в одну из его частей. Естественно, что равномерное распределение газа будет наблю­даться гораздо чаще, чем полное его сосредоточение в части сосуда.

Если в сосуде находится шесть молекул, то переходу нх в одну из частей сосуда (т. е. самопроизвольному сжатию газа до половины занимаемого им первоначального объема), как и раньше, соответствует только одно микросо­стояние. Но равномерному распределению газа между обеими частями сосуда отвечает уже 20 возможных комбинаций молекул, т. е. 20 различных микро­состояний:

 

А Б Л Б А Б А Б
1,2,3 4,5,6 1,3,5 2,4,6 2,3,4 1,5,6 2,5,6 1,3,4
1,2,4     3,5,6 1,3,6 2,4,5 2,3,5 1,4,6 3,4,5 1,2,6
1,2,5 3,4,6 1,4,5 2,3,6 2,3,6 1,4,5 3,4,6 1,2,5
1,2,6 3,4,5 1,4,6 2,3,5 2,4,5 1,3,6 3,5,6 1,2,4
1,3,4 2,5,6 1,5,6 2,3,4 2,4,6 1,3,5 4,5,6 1,2,3

Теперь явление самопроизвольного сжатия газа, т е. сосредоточения всех его молекул в одной из частей сосуда, будет наблюдаться еще реже; равномер­ное же распределение газа по всему сосуду становится еще более вероятным.

Таким образом, с ростом числа молекул вероятность беспоря­дочного, равномерного распределения газа в сосуде очень быстро возрастает, а самопроизвольное сжатие газа становится все менее вероятным процессом. Если мы вспомним теперь, что макроскопи­ческие количества газа содержат огромное число молекул, то ста­нет ясно, что в реальном опыте самопроизвольное сжатие газа представляет собой процесс практически невозможный, и что само­произвольно будет протекать обратный процесс расширения газа, приводящий к равномерному, беспорядочному распределению его молекул по всему объему сосуда.

Рассмотренное нами явление расширения газа представляет собой пример проявления принципа направленности процессов к наиболее вероятному состоянию, т. е. к состоянию, которому со­ответствует максимальная беспорядочность распределения частиц. Направление самопроизвольного протекания химических реакций и определяется совокупным действием двух факторов: тенденцией к переходу системы в состояние с наименьшей внутренней энергией и тенденцией к достижению наиболее вероятного состояния.

Так, в приведенном примере с воздухом тенденция к минимуму потенциальной энергии заставляет молекулы, входящие в состав воздуха, падать на Землю, а тенденция к максимальной вероятно­сти заставляет их беспорядочно распределяться в пространстве. В результате создается некоторое равновесное распределение молекул, характеризующееся более высокой их концентрацией у поверхности Земли и все большим разрежением по мере удале­ния от Земли.

В системах соль — вода минимум внутренней энергии в боль­шинстве случаев соответствует кристаллическому состоянию соли. Однако наиболее вероятное состояние системы достигается при беспорядочном распределении соли в жидкой воде. В результате совместного действия этих двух факторов устанавливается равно­весие, соответствующее определенной концентрации насыщенного раствора соли.

При химических реакциях в силу принципа направленности процессов к минимуму внутренней энергии атомы соединяются в такие молекулы, при образовании которых выделяется наиболь­шее количество энергии. В силу же принципа направленности про­цессов к наиболее вероятному состоянию протекают такие реак­ции, в ходе которых возрастает число частиц (например, реакции разложения молекул на атомы) или чисто возможных состояний атомов.

Так, в случае реакции

N2 + 3H2 = 2NH3+ 92,4 кДж

минимальной внутренней энергии системы соответствует аммиак, образующийся при протекании реакции до конца вправо. Однако наиболее вероятному состоянию системы отвечает азото-водород-ная смесь, образующаяся при полном разложении аммиака, ибо при этом в 2 раза возрастает число молекул газов. Вследствие действия обоих фактором в системе устанавливается равновесие, отвечающее определенному при данной температуре соотношению концентраций всех веществ. В случае реакции

N2 + O2 = 2NO - 180,8 кДж

минимальной внутренней энергии отвечает азото-кислородиая смесь, образующаяся при полном разложении оксида азота. По­скольку в ходе этой реакции число частиц не изменяется, то про­текание реакции до конца как в прямом, так и в обратном на­правлении не увеличивает вероятности состояния системы. Не изменяется при этом и число возможных состояний атомов: в ис­ходных веществах каждый атом и азота, и кислорода связан с атомом того же элемента (молекулы N2 и О2), а в продукте реак­ции каждый атом связан с атомом другого элемента (молекула N0). Иначе обстоит дело при частичном протекании процесса в прямом или в обратном направлении. В результате частичного прохождения реакции, т. е. при сосуществовании исходных веществ и продуктов реакции, атомы азота и кислорода находятся в двух состояниях: часть их связана в молекулы N2 и О2, а часть — в молекулы N0, Таким образом, число возможных микросостояний рассматриваемой системы, а следовательно, и вероятность соот­ветствующего ее макросостояния возрастают при частичном про­текании реакции. Итак, тенденция к уменьшению внутренней энергии способствует протеканию данной реакции до конца в обратном направлении, а тенденция к увеличению вероятности со­стояния вызывает ее частичное протекание в прямом направлении. Вследствие одновременного действия обоих факторов часть азото-кислородной смеси при нагревании превращается в N0 и устанав­ливается равновесие между исходными веществами и продуктом реакции.

Тенденция к переходу в состояние с наименьшей внутренней энергией проявляется при всех температурах в одинаковой сте­пени. Тенденция же к достижению наиболее вероятного состояния проявляется тем сильнее, чем выше температура. Поэтому при низких температурах в большинстве случаев практически сказы­вается только влияние первой из этих тенденций, в результате чего самопроизвольно протекают экзотермические процессы. По мере возрастания температуры равновесие в химических системах все больше и больше сдвигается в сторону реакций разложения или увеличения числа состояний атомов. При этом каждой температуре отвечает состояние равновесия, характеризующееся определенным соотношением концентраций реагирующих веществ и продуктов реакции.

Оба рассмотренных фактора, а также результат их совместного действия можно выразить количественно. Величины, с помощью которых это делается, изучаются в разделе физики — термоди­намике и называются термодинамическими величи­нами. К ним относятся, в частности, внутренняя энергия, энталь­пия, энтропия и энергия Гиббса.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных