Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Деление атомных ядер




 

Делением атомных ядер называется процесс раскалывания ядра на две примерно равные части. Обычно такой процесс происходит, когда в тяжелое ядро попадает какая-нибудь частица – нейтрон, протон, альфа-частица и др. В таких случаях деление называется вынужденным. Но иногда деление происходит и самопроизвольно, такое деление называется спонтанным.

Механизм вынужденного деления. Когда в ядро попадает какая-то частица (например, нейтрон), то внутри ядра выделяется её энергия связи Есв. К ней добавляется значительная часть кинетической энергии частицы Е, в результате чего ядро приходит в возбужденное состояние, причем его полная энергия возбуждения оказывается равной Е*= Есв + Е·А/(А+1). Это возбуждение проявляется в форме ускоренного движения всех нуклонов ядра, ядро «кипит», по его поверхности бегут волны и т.п. Дальше происходит одно из двух. Либо избыточная энергия уйдет из ядра с испусканием одного или нескольких гамма-квантов (т.е. произойдет радиационный захват влетевшей частицы). Либо в результате колебаний ядерной «жидкости» в ядре образуется перетяжка, ядро примет форму гантели, и под влиянием кулоновского отталкивания зарядов двух половинок этой «гантели», перетяжка лопнет, и две части бывшего ядра разлетятся в противоположные стороны с большой энергией, полученной от тех же сил кулоновского отталкивания одноименных электрических зарядов. Образовавшиеся половинки первоначального ядра называются осколками деления. Под влиянием сил поверхностного натяжения они приобретут сферическую форму и станут ядрами новых атомов с массами, равными примерно половине массы ядра урана, т.е. атомами элементов, лежащих в середине таблицы Менделеева.

 

Потенциальный барьер деления. Для того чтобы ядро разделилось, ему необходимо вначале придать достаточно большую деформацию, которая возникает в результате сообщенной ядру энергии возбуждения – в противном случае ядро стянется в сферу и деление не произойдет. Минимальная энергия возбуждения, при котором деление становится возможным, называется потенциальным барьером деления и обозначается символом Uf. Деление возможно, если энергия возбуждения ядра Е* > Uf. Если же Е* < Uf, то деление невозможно. У всех тяжелых ядер (тория, урана, плутония и др.) значения Uf примерно одинаковы и равны 5,1 – 5,4 МэВ. При таких условиях все тяжелые ядра должны были бы проявлять одинаковые способности к делению. Однако это не так.

Известно, что по отношению к делению нейтронами ядра делятся на две различные группы:

· нечетные ядра, такие как 233U, 235U, 239Pu, 241Pu. Они легко делятся любыми, даже тепловыми нейтронами, поэтому их часто называют «топливными» ядрами;

· четно-четные ядра 232Th, 234U, 238U, 240Pu, 242Pu тепловыми нейтронами не делятся, поэтому их часто называют «сырьевыми».

Происходит это потому, что при попадании нейтрона в нечетное ядро образуется четно-четное ядро (например, 235U + n → 236U),энергия связи нейтрона в котором особенно велика, так что даже при нулевой кинетической энергии нейтрона энергия возбуждения оказывается больше высоты барьера деления, и ядро легко делится.

При попадании же нейтрона в четно-четное ядро (например, 238U + n → 239U), образуется нечетное ядро, энергия связи нейтрона в котором значительно меньше, и её не хватает для преодоления барьера деления. Но если в последнем случае в ядро попадет не тепловой, а быстрый нейтрон с достаточно большой кинетической энергией, то может оказаться, что суммарная энергия возбуждения Е* > Uf, и деление произойдет. Минимальная кинетическая энергия нейтрона, при которой становится возможным деление четно-четного ядра, называется пороговой энергией деления Епор . Для ядра 238U эта энергия Епор ≈ 1 МэВ. Примерно такие же значения имеют пороговые энергии и для других четно-четных ядер. Так что все такие ядра тоже делятся, но только быстрыми нейтронами.

Спонтанное деление. Из-за большой перегрузки протонами, которые отталкиваются друг от друга электростатическими силами и тем самым пытаются разорвать ядро, тяжелые ядра оказываются крайне неустойчивыми и поэтому способны делиться сами, без всякого воздействия извне. Такое самопроизвольное деление и называется спонтанным делением. Происходит спонтанное деление подобно альфа-распаду путем туннельного эффекта прохождения осколков через барьер деления. Но из-за большого заряда осколков, их вероятность прохождения через потенциальный барьер при делении ядер урана оказывается значительно меньше, чем для альфа-частиц, а период полураспада по отношению к спонтанному делению, соответственно, гораздо больше. Так для альфа-распада ядер урана-238 период Tα = 4,5·109 лет, тогда как для спонтанного деления Tf = 1016 лет, т.е. в 2,5 миллиона раз больше. По мере увеличения заряда ядра значения Tf быстро уменьшаются. Так для ядер искусственных трансурановых элементов (см. ниже) с Z>100 величина Tf измеряется минутами и даже секундами, причем для некоторых нуклидов спонтанное деление становится даже более предпочтительным видом распада. Это позволяет считать спонтанное деление четвертым видом радиоактивного распада в дополнение к альфа-, бета- и гамма-распадам.

Выделение энергии при делении ядер. График на рис.1.1. показывает, что удельная энергия связи нуклонов у ядер урана (≈ 7,5 МэВ/нуклон) существенно меньше, чем у ядер с вдвое меньшей массой (≈ 8,4 МэВ/нуклон), которые получаются при делении в виде осколков. Это означает, что осколки связаны гораздо сильнее, чем ядра урана, и при их образовании за счет перегруппировки нуклонов выделяется лишняя энергия связи в количестве примерно 0,9 МэВ на нуклон. А так как в процессе деления одного ядра участвуют 236 нуклонов, то общее выделение энергии при делении одного ядра составляет 236·0,9 ≈ 212 МэВ. Основная часть этой энергии достается осколкам в виде их кинетической энергии. Но при делении ядер кроме осколков выделяется еще несколько разных частиц, которые уносят остальную энергию. Примерное распределение энергии между различными частицами при делении ядер урана тепловыми нейтронами приведено в табл.1.3. Суммарное количество энергии (215 МэВ) хорошо согласуется со сделанной выше оценкой (212 МэВ). Из этого количества энергии 10 МэВ уносятся антинейтрино в космическое пространство и являются т.о. «безвозвратными потерями». Остальная энергия поглощается в различных материалах реактора и в конечном итоге превращается в тепловую энергию, которая используется либо непосредственно (в АСТ и АТЭЦ), либо для получения электрического тока (в АЭС и АТЭЦ).

 

Таблица 1.3. Распределение энергии при делении тяжелых ядер

Форма выделения энергии Энергия (МэВ)
Кинетическая энергия осколков деления  
Кинетическая энергия вторичных нейтронов деления  
Энергия мгновенного гамма-излучения при делении  
Энергия, уносимая электронами при бета-распаде осколков  
Энергия, уносимая антинейтрино при бета-распаде осколков  
Энергия гамма-излучения, сопровождающего бета-распад осколков  
Энергия, выделяющаяся при захвате нейтронов ядрами среды  
Всего  

Эффективные сечения деления. Ядра, делящиеся тепловыми нейтронами, способны также делиться промежуточными и быстрыми нейтронами, поэтому для них, так же как и при радиационном захвате (см. выше), необходимо рассмотреть особенности поведения сечений деления во всех трех областях.

В области тепловых нейтронов сечения деления изменяются с ростом энергии также по закону «1/v». Усредненные по этой области значения сечений деления σ f приведены в табл.1.4.

 

Таблица 1.4. Сечения деления некоторых ядер тепловыми нейтронами

Параметр Единица измерения Делящиеся нуклиды
233U 235U 239Pu 241Pu
σ f барн 529,1 582,6 748,0 1011,1
σ n,γ барн 45,5 98,3 269,3 358,2
α = σ n,γf - 0,086 0,169 0,360 0,354

 

К сожалению, при попадании нейтрона в ядро урана или плутония может происходить не только деление, но и радиационный захват нейтрона без деления, например 235U(n,γ)236U. Этот процесс для работы реактора вреден, и притом вдвойне:

1) теряется нейтрон, который не сможет участвовать в цепной реакции деления;

2) теряется ядро ядерного топлива 235U, превращающееся в четно-четное ядро 236U, которое, как отмечалось выше, тепловыми нейтронами не делится.

Но как видно по табл.5, сечения деления во всех случаях оказываются больше сечений радиационного захвата, поэтому полезный процесс деления происходит с большей вероятностью, чем нежелательный процесс радиационного захвата. Особенно наглядно это демонстрируют отношения сечений этих двух процессов (последняя строка в табл.1.4).

В области промежуточных нейтронов в зависимости сечений деления от энергии, так же как и при радиационном захвате, проявляются резонансные пики. В среднем в этой области значения параметра «альфа» оказываются даже несколько больше, чем в области тепловых нейтронов, поэтому реакторы на промежуточных нейтронах хотя и строятся, но большого распространения они не получили.

В области быстрых нейтронов зависимость сечений деления от энергии нейтронов становится гладкой, но в отличие от сечений радиационного захвата, сечения деления не только не убывают с ростом энергии нейтронов, а даже несколько увеличиваются. Это приводит к значительному улучшению отношения вероятностей радиационного захвата нейтронов и деления, особенно для плутония, для которого на быстрых нейтронах отношение α = 0,029, т.е. в 12 с лишним раз лучше, чем для тепловых нейтронов. С этим обстоятельством связано одно из основных преимуществ ядерных реакторов, работающих на быстрых нейтронах, по сравнению с тепловыми реакторами.

Сечения деления четно-четных нуклидов до порога деления равны, естественно, нулю, а выше порога они хотя и отличаются от нуля, но никогда не приобретают больших значений. Так сечение деления 238U при энергиях выше 1 МэВ оказывается порядка 0,5 барн.

Осколки деления. Несмотря на большую энергию (примерно по 82 МэВ у каждого осколка), пробеги осколков в воздухе оказываются не больше, а даже несколько меньше пробегов альфа-частиц (около 2 см). И это несмотря на то, что альфа-частицы имеют значительно меньшие энергии (4 – 9 МэВ). Происходит это потому, что электрический заряд осколка значительно больше заряда альфа-частицы, и поэтому он гораздо интенсивнее теряет энергию на ионизацию и возбуждение атомов среды.

Более точные измерения показали, что пробеги осколков, как правило, оказываются не одинаковыми, и группируются около значений 1,8 и 2,2 см.

Вообще при делении могут образовываться осколки с самыми различными массовыми числами в пределах от 70 до 160 (т.е. около 90 различных значений), но образуются осколки с такими массами с разными вероятностями. Эти вероятности принято выражать т.н. выходами осколков YА с данным массовым числом А: YА = NA / Nf, где NA – число осколков с массовым числом А, возникших при Nf, делений ядер. Обычно величину YА выражают в процентах.

Кривая распределения выходов осколков деления по массовым числам имеет два максимума (или «горба»), при этом один максимум находится в области А=90, а второй в районе А=140. Отметим, что именно ядра примерно этих масс чаще всего встречаются в следах –выпадениях осадков после ядерных испытаний или ядерных аварий. Достаточно вспомнить следы таких нуклидов как 131I, 133I, 90Sr, 137Сs.

Отношение числа нейтронов к числу протонов в осколках в первый момент оказывается примерно таким же, каким оно было в ядре урана, т.е. 143:92 = 1,55. Но у стабильных ядер со средними значениями масс, к которым относятся осколки, это отношение значительно ближе к единице: например, у стабильного ядра 118Sn это отношение равно 1,36. Это означает, что ядра осколков сильно перегружены нейтронами, и они будут стремиться избавиться от этой перегрузки путем бета-распадов, при которых нейтроны превращаются в протоны. При этом, для того, чтобы первичный осколок превратился в стабильный нуклид, может потребоваться несколько последовательных бета-распадов, образующих целую цепочку, например:

 

(стабилен).

Здесь под стрелочками приведены периоды полураспада нуклидов: s -секунды, h -часы, y -годы. Заметим, что осколком деления принято называть только самое первое ядро, непосредственно возникающее при делении ядра урана (в данном случае – 135 Sb). Все остальные нуклиды, возникающие в результате бета-распадов, вместе с осколками и стабильными конечными нуклидами, называют продуктами деления. Поскольку вдоль цепочки массовое число не изменяется, то всего таких цепочек при делении ядер урана может образоваться столько, сколько может возникнуть массовых чисел, т.е. примерно 90. А так как в каждой цепочке содержится в среднем 5 радиоактивных нуклидов, то всего среди продуктов деления можно насчитать около 450 радионуклидов с самыми различными периодами полураспада от долей секунды до миллионов лет. В ядерном реакторе накопление продуктов деления создает определенные проблемы, т.к. во-первых, они поглощают нейтроны и тем самым затрудняют протекание цепной реакции деления, а во-вторых, из-за их бета-распада возникает остаточное тепловыделение, которое может продолжаться очень долго после остановки реактора (в остатках чернобыльского реактора тепловыделение продолжается и поныне). Значительную опасность радиоактивность продуктов деления создает и для человека.

Вторичные нейтроны деления. Нейтроны, вызывающие деление ядер, называются первичными, а нейтроны, возникающие при делении ядер – вторичными. Вторичные нейтроны деленияиспускаются осколками в самом начале их движения. Как уже отмечалось, осколки непосредственно после деления оказываются сильно перегруженными нейтронами; при этом энергия возбуждения осколков превышает энергию связи нейтронов в них, что и предопределяет возможность вылета нейтронов. Покидая ядро осколка, нейтрон уносит с собой часть энергии, в результате чего энергия возбуждения ядра осколка снижается. После того, как энергия возбуждения ядра осколка станет меньше энергии связи нейтрона в нём, вылет нейтронов прекращается.

При делении разных ядер образуется различное число вторичных нейтронов, обычно от 0 до 5 (чаще всего 2-3). Для расчетов реакторов особое значение имеет среднее число вторичных нейтронов, испускаемых в расчете на один акт деления. Это число обозначается обычно греческой буквой ν (ню) или, чаще νf. Значения νf зависят от типа делящегося ядра и от энергии первичных нейтронов. Некоторые примеры приведены в таблице 1.5. Приведенные в этой таблице данные показывают, что значения νf увеличиваются как с ростом заряда и массы делящегося ядра, так и с увеличением энергии первичных нейтронов.

 

Таблица 1.5. Средние количества вторичных нейтронов, образующихся при делении ядер тепловыми и быстрыми нейтронами

Исходное ядро Значения νf при различных энергиях первичных нейтронов
Тепловые нейтроны Быстрые нейтроны
U-233 2,480 2,734
U-235 2,407 2,677
U-238 - 2,788
Pu-239 2,874 3,188
Pu-240 - 3,163
Pu-241 2,931 3,228

 

С последним обстоятельством связано еще одно преимущество реакторов на быстрых нейтронах – большее число вторичных нейтронов позволяет осуществлять в них процесс расширенного воспроизводства ядерного топлива (см. ниже). Вторичные нейтроны возникают и при спонтанном делении ядер. Так νf (U-238)= 1,98, а νf (Cf-252) = 3,767.

Процесс испускания вторичных нейтронов сильно возбужденными ядрами осколков напоминает процесс испарения молекул с поверхности сильно нагретой капли жидкости. Поэтому энергетический спектр вторичных нейтронов похож на распределение Максвелла молекул при тепловом движении. Максимум этого спектра лежит при энергии 0,8 МэВ, а средняя энергия вторичных нейтронов деления оказывается порядка 2 МэВ.

Основная часть вторичных нейтронов вылетает из ядер осколков в среднем за время 10-14 с после деления ядра, т.е. практически мгновенно. Поэтому эту часть вторичных нейтронов называют мгновенными нейтронами. Но существуют еще и т.н. запаздывающие нейтроны, играющие важную и совершенно особую роль в реакторах.

Запаздывающие нейтроны при делении ядер. Опыт показывает, что малая доля вторичных нейтронов (обычно < 1 %) испускается облученным нейтронами образцом делящегося материала спустя долгое время после прекращения облучения, когда деления ядер в образце тоже, естественно, уже не происходят. Происхождение запаздывающих нейтронов связано с бета-распадом некоторых осколков деления. Если бета-распад происходит на уровень конечного ядра, энергия возбуждения которого превышает энергию связи нейтрона, то распад ядра из этого состояния может произойти не путем испускания гамма-кванта, как обычно, а путем испускания нейтрона. Вылет нейтрона происходит практически в то же мгновение, как только образуется возбужденное ядро, но относительно процесса деления исходного ядра этот момент оказывается отодвинутым на время, которое потребовалось для бета-распада осколка. Поэтому запаздывающие нейтроны вылетают практически одновременно с бета-частицами, и их выход во времени описывается таким же экспоненциальным законом и с тем же периодом полураспада, что и бета-распад осколка.

Доля запаздывающих нейтронов определяется как отношение числа запаздывающих нейтронов к числу всех вторичных нейтронов деления: β = Nзап.n /Nn. Значения β для некоторых ядер при делении их нейтронами различных энергий приведены в табл.1.6.

 

Таблица 1.6. Доли запаздывающих нейтронов при делении ядер

Исходный Нуклид Β (%) при делении ядер
Тепловыми нейтронами Нейтронами с энергией 2 МэВ
233U 0,24 0,26
235U 0,65 0,60
238U - 1,7
239Pu 0,21 0,20

 

Поскольку запаздывающие нейтроны могут возникать при распаде различных ядер -осколков (называемых ядрами - предшественниками запаздывающих нейтронов), каждый из которых распадается со своим периодом полураспада, то и запаздывающие нейтроны образуют несколько групп, каждая из которых имеет свой период полураспада. Основные параметры этих групп приведены в табл. 1.7. В этой таблице относительные выходы запаздывающих нейтронов нормированы на единицу. Энергии запаздывающих нейтронов несколько меньше средней энергии мгновенных нейтронов (2 МэВ), так как они вылетают из менее возбужденных осколков. Периоды полураспада групп запаздывающих нейтронов не совсем точно совпадают с периодами полураспада выделенных предшественников, так как на самом деле предшественников запаздывающих нейтронов гораздо больше – некоторые исследователи находили их до нескольких десятков. Нейтроны от предшественников с близкими периодами сливаются в одну группу с некоторым усредненным периодом, который и заносится в таблицы. По этой же причине выходы групп и их периоды зависят от типа делящегося ядра и энергии первичных нейтронов, так как при изменениях этих двух параметров изменяются выходы осколков деления, а, следовательно – изменяется и состав групп.

Таблица 1.7. Параметры групп запаздывающих нейтронов при делении 235U тепловыми нейтронами

Номер группы Период полураспада (сек) Относительный выход Средняя энергия (кэВ) Основной предшественник
нуклид Т (сек)
  55,72 0,033   Br-87 55,6
  22,72 0,219   I-137 24,5
  6,22 0,196   I-138 6,49
  2,30 0,395      
  0,61 0,115      
  0,23 0,042 -    

 

Запаздывающие нейтроны играют определяющую роль в деле управления цепной реакцией деления и работой всего ядерного реактора в целом.

Мгновенное гамма-излучение при делении. Когда после вылета из осколка последнего нейтрона энергия возбуждения ядра осколка оказывается ниже энергии связи нейтрона в нем, дальнейший вылет мгновенных нейтронов оказывается невозможным. Но некоторая лишняя энергия в осколке еще остается. Эта избыточная энергия уносится из ядра серией испускаемых гамма-квантов. Как отмечалось выше, суммарная энергия мгновенных гамма-квантов составляет около 8 МэВ, среднее их число на одно деление равно приблизительно 10, следовательно, средняя энергия одного гамма-кванта при делении тяжелых ядер равна примерно 0,8 МэВ.

Таким образом, ядерный реактор является мощным источником не только нейтронов, но и гамма-излучения, и защищаться приходится от обоих этих видов излучений.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных