Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Комплексный двухкартинный чертеж точки.




Плоскости П1 и П2 принято называть горизонтальной и фронтальной плоскостями проекций, а проекции точек и других геометрических фигур на эти плоскости - соответственно горизонтальными и фронтальными проекциями.

Пространственная модель плоскостей проекций с заданными на них горизонтальной и фронтальной проекциями А1 и А2 точки А (рис. 2.2) хотя и определяет положение точки А в пространстве, но неудобна в использовании. Для того, чтобы превратить пространственную систему плоскостей проекций в плоскую фигуру, совмещаем плоскости проекций. При этом плоскость П1, вращаясь вокруг оси x, опускается вниз до совмещения с плоскостью П2. На рис. 2.3 изображены совмещенные плоскости проекций

и проекции точек на них.

Совмещенные плоскости проекций изображаются с помощью проекций осей координат - оси x12, представляющей собой слившиеся горизонтальную и фронтальную проекции оси x, оси z2 - фронтальной проекции оси z, и оси y1 - горизонтальной проекции оси y. Оси z2 и y1 расположены вертикально по одной прямой и по разные стороны от точки О. В ряде случаев оси z2 и y1 не обозначают (рис. 2.4).

Поле чертежа представляет собой проекции совмещенных плоскостей проекций, а весь чертеж является моделью трехмерного пространства.

Вместе с проекциями А1, А2 точки А и прямой, связывающей эти проекции, рис. 2.3 и рис. 2.4 каждый представляют собой двухкартинный комплексный чертеж точки (эпюр точки).

Впервые описал и обосновал комплексный чертеж точки, применяя совмещение плоскостей проекций, известный французский ученый Гаспар Монж, который жил и творил во времена Великой Французской революции.

Труд «Начертательная геометрия» был написан Монжем в 1775 году. В те времена метод Монжа было военной тайной, так как этот метод давал большие преимущества французской промышленности. Монжу разрешили опубликовать свой труд только в 1795 году, через 20 лет.

Метод изображения с помощью совмещения плоскостей проекций вошел в историю техники как метод Монжа.

Отличительной особенностью комплексного чертежа точки является то, что горизонтальная и фронтальная проекции точки А всегда лежат на одном перпендикуляре к горизонтальной оси x12 эпюра. Действительно, порознь имеет место А1Аx1 x1 и А2Аx2 x2, но так как горизонтальная и фронтальная проекции оси x1 и x2 совпадают, образуя x12, и проекции точки Аx1 и Аx2 совпадают, образуя А12, а при вращении П1 вокруг оси x отрезки А1Аx1 и А2Аx2 не меняют своего положения по отношению к одноименным проекциям оси x, то после совмещения получается, что из одной точки А12 слившихся проекций оси x12 выходят два отрезка А12А2 и А12А1 , порознь перпендикулярные к этой оси. Следовательно, эти отрезки лежат на одной прямой.

Перпендикуляр к оси эпюра, связывающий проекции А1 и А2, называется линией проекционной связи.

Комплексный чертеж точки вполне определяет ее положение в пространстве.

2.1.2. Замена плоскостей проекций. Плоскостей, перпендикулярных к плоскости П1, кроме плоскости П2, можно провести множество, и точно также к плоскости П2 можно провести множество перпендикулярных плоскостей.

Рассмотрим, каким образом необходимо преобразовать чертеж, чтобы заменить плоскость П2 на П4 , причем П4 П1. На рис. 2.5 изображена система плоскостей проекций П1 - П2 с осью x12. Назовем ее старой системой. Введем плоскость П4, перпендикулярную П1. Новая система плоскостей проекций П1 - П4 имеет ось проекций x14. Проекциями точки А в старой системе были А1 и А2, а в новой системе стали А1 и А4. Точка А4 получена ортогональным проецированием точки А на плоскость П4. На осях проекций x12 и x14 не отмечено начало координат, потому что координата x в данном преобразовании не нужна.

При замене одной из плоскостей проекций, как видно из рис. 2.5, имеется два инварианта (величины, остающиеся постоянными при преобразованиях):

1) проекция точки на незаменённую плоскость проекций. В данном случае это точка А1;

2) расстояние точки до незаменённой плоскости проекций. В данном случае это zА.

На рис. 2.6 показано построение проекции точки А4 по данным А1 и А2 и имеющемуся направлению новой оси проекции x14 при замене П2 на П4. На этом рисунке даны старая и новая оси проекций. Около каждой оси отмечены плоскости проекций, пересечением которых они являются.

Из точки А1, которая является инвариантом при данном преобразовании, проводим линию связи перпендикулярно к оси x14. От точки пересечения линии связи А14 с осью x14 откладываем второй инвариант - расстояние точки А до плоскости П1. Тогда А14А4 = zА = А12А2.

На рис. 2.7 показано преобразование чертежа, при котором заменена плоскость П1 на П5. Здесь инвариантами являются проекция А2 и расстояние до незамененной плоскости П2. Построения понятны из чертежа. Очевидно, что А25А5 = yА = А1А12.

 

 

Если необходимо заменить обе плоскости проекций, то преобразование нужно выполнять последовательно: сначала заменить одну плоскость проекций, а потом вторую.

На рис. 2.8 показано преобразование, в котором система П1 - П2 заменена на систему П5 - П6. Сначала заменена плоскость П1 на П5, а после этого П2 на П6.

2.1.3. Комплексный трехкартинный чертеж точки. Оси проекций z и y (рис. 2.1) образуют плоскость, перпендикулярную к оси x и к плоскостям П1 и П2. Обозначим эту плоскость П3 и назовем ее профильной плоскостью проекций.

Построение профильной проекции точки. Профильную проекцию А3 точки А на плоскость П3 найдем, заменив П1 на П3 (рис. 2.9).

В данном преобразовании старая система плоскостей проекций П1 - П2 заменяется на новую П2 - П3. Проекция А2 остается неизменной. Из точки А2 проводим линию связи, перпендикулярную новой оси проекций, и вдоль нее от новой оси откладываем второй инвариант - расстояние точки А до плоскости П2, равное yА = А1А12.

Новая ось проекций должна быть названа x23, но, учитывая традиции в изучении начертательной геометрии и то, что новая ось совпадает с осью z, мы вместо x23 напишем z23.

На рис. 2.10 и рис. 2.11 показаны практические приемы построения профильной проекции точки. Из точки А2 в обоих случаях проводится линия связи, параллельная горизонтальной оси эпюра. Вдоль этой линии от точки А23 откладывается отрезок, равный yА = А1А12. На рис. 2.10 эта операция производится с помощью дуги окружности, на рис. 2.11 с помощью отражения от прямой, проведенной под углом 450 к горизонтальной оси чертежа. Порядок построения показан стрелками.

Параллелепипед координат. На рис. 2.12 показана пространственная модель плоскостей проекций и построены проекции точки А на горизонтальную - А1, фронтальную - А2 и профильную - А3 плоскости проекций. Если плоскости проекций продолжить во все стороны, то они разобьют пространство на 8 частей, называемых октантами. Ограничимся рассмотрением проекций фигур, находящихся в первом октанте, которому соответствуют положительные направления осей.

При проецировании точки на плоскости проекций образуется параллелепипед, у которого три пространственных ребра АА1, АА2 и АА3 совпадают с проецирующими лучами. Шесть ребер параллелепипеда лежат на плоскостях проекций - по два ребра на каждой: А1А12 и А1А13 на П1; А2А12 и А2А23 на П2; А3А13 и А3А23 на П3. Эти ребра образуются пересечением плоскостей, заданных парами пересекающихся проецирующих лучей, с плоскостями проекций.

Последние три ребра совпадают с осями проекций: А12О - с осью x12, А13О - с осью y13 и А23О - с осью z23.

Так как данная система плоскостей проекций совпадает с прямоугольной системой координат, то полученный параллелепипед можно назвать параллелепипедом координат.

 

Совмещение плоскостей проекций осуществляем как и для случая построения комплексного двухкартинного чертежа точки. Плоскость П1 при этом вращается вокруг оси x12 до совмещения с плоскостью П2, и горизонтальная проекция оси у1 опускается вниз (рис. 2.13). Плоскость П3 вращается вокруг оси z23 вправо до совмещения с плоскостью П2. При этом оси х12 и z23 остаются на месте. Профильная проекция оси у3 поворачивается вместе с плоскостью П3 вправо и встает на одну линию с осью х12.

На рис. 2.14 показан комплексный трехкартинный чертеж (эпюр) точки А. Также как и для комплексного двухкартинного чертежа точки в данном случае имеем:

1) горизонтальная и фронтальная проекции точки А лежат на одной прямой, перпендикулярной к оси х12, т.е. А1А2 х12;

2) фронтальная и профильная проекции точки А лежат на одной прямой, перпендикулярной к оси z23, т.е. А2А3 z23. Доказательство этого положения аналогично приведенному ранее для комплексного двухкартинного чертежа точки, но только по отношению к оси z23.

Проекции точек, лежащих на плоскостях проекций. Проекции точки, лежащей на плоскости, можно получить, приравнивая нулю соответствующую координату, так как координата – отрезок, выражающий расстояние от точки до плоскости проекции (рис.2.15).

Рис. 2.15  

 

Поэтому, если zА =0, то А П1 (рис. 2.15, а). При уА =0 А П2 (рис. 2.15, б) и, когда хА =0, А П3 (рис. 2.15, в).

Проекции точек, лежащих на осях проекций. На рис. 2.16 рассмотрены случаи, когда точка А лежит на осях проекций: А x (рис. 2.16, а); А y (рис. 2.16, б); А z (рис. 2.16, в).

 

 

Построение проекций точек по координатам. Последовательность построения проекций точки А (xA, yA, zA) следующая (рис. 2.17):

1) От точки О вдоль оси х12 откладываем отрезок длиной xA и отмечаем точку А12.

2) Через точку А12 проводим линию проекционной связи перпендикулярно оси х12.

3) Вниз на линии проекционной связи от точки А12 откладываем отрезок длиной yA и получаем горизонтальную проекцию А1.

4) Вверх на линии проекционной связи от точки А12 откладываем отрезок длиной zA и получаем фронтальную проекцию А2.

5) Строим профильную проекцию А3, для чего из точки А2 проводим линию проек-ионной связи перпендикулярно оси z23 и от полученной точки А23 откладываем отрезок длиной yA.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных