Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ПЛИН В'ЯЗКИХ РІДИН У БІОЛОГІЧНИХ СИСТЕМАХ




Рух рідких середовищ (крові, лімфи, інтерстиціальних та клітинних рідин) у біологічних системах відіграє важливу роль, забезпечуючи умови нормальної життєдіяльності різних фізіологічних систем. Задача біофізики полягає у вивченні фізичних властивостей рідких середовищ і фізичних основ їх руху. Плин рідин відбувається під дією сил, з'ясування природи яких також є однією з важливих задач біофізики.

Рідкі середовища мають ряд специфічних властивостей, зумовлених особливостями їх молекулярної будови. Однією з найважливіших властивостей рідини є в'язкість.

 

В'язкість рідини

У реальних рідких середовищах на границях шарів, що рухаються, діють сили внутрішнього тертя. Можна навести чимало прикладів дії цих сил: вони є причиною падіння

тиску вздовж судини при плині крові, саме вони визначають поведінку рідини у судині, що обертається, перешкоджують рухові тіл у рідинах тощо.

Досліди свідчать про те, що сили тертя між шарами рідини, які рухаються з різними швидкостями, діють по дотичній до поверхонь цих шарів (мал. 1.7) і спрямовані таким чином, що прискорюють шар, що рухається більш повільно, і гальмують шар, який рухається швидше.

Розглянемо поведінку рідини, що знаходиться між дво­ма пластинами, одна з яких нерухома, а інша під дією при­кладеної до неї сили F рівномірно рухається зі швидкістю υ (мал. 1.7). Дія дотичного зсуваючого напруження στ= - FT /S викликає деформацію зсуву, причому відносний зсув за одиницю часу γ = dv/dy, який називають градієн­том швидкості, виявляється пропорційним до прикладеного зсувного напруження:

. (1.8)

Мал. 1.7. Сила тертя між шарами рідини. Мал. 1.8. Профіль швидкостей.

Рівняння (1.8), відоме як рівняння Ньютона, описує явище внутрішнього тертя. Таким чином, профіль швидкостей, який ми спостерігаємо у цьому випадку (мал. 1.8), обумовлений тим, що між шарами реальної рідини, що тече, діють сили внутрішнього тертя F, які пропорційні до площі S шарів, що дотикаються, та градієнта швидкості dυ/dy у напрямку, перпендикулярному до напрямку плину рідини. Коефіцієнт пропорційності η в рівнянні Ньютона зветься коефіцієнтом в'язкості (точніше кажучи, зсувної в'язкості) і дорівнює силі внутрішнього тертя, що діє на одиницю площі поверхні шару при градієнті швидкості, який дорівнює одиниці.

Розмірність коефіцієнта в'язкості η у системі СІ [Па*с]. Досить часто використовується ще й позасистемна одиниця в'язкості Пуаз (П), яка зв'язана з Па*с співвідношенням 1П= 0.1 Па*с. Так, в'язкість дистильованої води при кімнатній температурі дорівнює приблизно 10-3 Па*с = 10-2 П, тобто Цводи ≈ 1 мПа*с = 1сП.

Зручно користуватися безрозмірним коефіцієнтом в'яз­кості, що зветься відносною в'язкістю ηвідн. Відносна в'яз­кість дорівнює відношенню коефіцієнта в'язкості даної рі­дини до коефіцієнта в'язкості дистильованої води при одній і тій самій температурі:

(1.9)

У гідродинаміці користуються також і кінематичною в'язкістю v рідини, що являє собою відношення коефіцієнта в'язкості до густини

(1.10)

Кінематична в'язкість v має розмірність [v] = м2/с. В'язкість рідини є динамічна властивість, залежить від природи рідини, температури і для багатьох рідин також від умов плину.

Моделі рідин. Описуючи рух рідких середовищ, вико­ристовують різні моделі рідин. Найбільш простою є модель ідеальної рідини, яка не підлягає стисненню (ρ= const) і в ній відсутні сили внутрішнього тертя (η= 0). Ця модель використовується для отримання найбільш простих рівнянь руху рідини. Неідеальні рідини, в яких сили внутрішнього тертя описуються рівнянням Ньютона, звуться ньютонівсь-

кими. Для ньютонівських рідин коефіцієнт в'язкості η залежить лише від температури та природи рідини і не залежить від умов плину. До ньютонівських рідин можна віднести воду, розчини електролітів, ртуть, гліцерин, спир­ти. Існують рідини, коефіцієнт в'язкості яких залежить від умов плину, а саме, змінюється із зміною швидкості де­формації зсуву dυ/dy внаслідок перебудови внутрішньої структури, обумовленої напруженням зсуву при плині ріди­ни. Такі рідини звуться неньютонівськими. До них відно­сять розчини білків, полімерів, деякі суспензії.

Описуючи динаміку руху біологічних рідин, розгляда­ють умови їх плину і, залежно від них, обирають ту чи іншу модель рідини - від ідеальної до реальної.

 

В'язкість крові

Кров являє собою приклад складної за своїм вмістом рідини. Вона є суспензією форменних елементів (еритроци­тів, лейкоцитів, тромбоцитів) у водному колоїдному розчині - плазмі, сумарна концентрація білків у якій становить 6-9%. Експеримент виявив суттєву залежність в'язкості крові від її складу, що визначається показником гематокриту Не (мал. 1.9а), який дорівнює відношенню об'єму форменних елементів Vф до об'єму плазми крові Vпл:

(1.11)

Оскільки об'єм форменних елементів в основному при­падає на еритроцити, показник гематокриту характеризує вміст еритроцитів у крові.

Як свідчить наведена на малюнку залежність ηвідн = = f(Не), в'язкість крові змінюється у досить широкому діа­пазоні по відношенню до норми (N). Вона зростає при поліцитемії і зменшується при анемії.

Відомо декілька емпіричних формул, що зв'язують ко­ефіцієнт в'язкості крові з показником гематокриту:

1 (1.12)

де η о - в'язкість плазми, α, β, γ- емпіричні константи, зна­чення яких залежить від концентрації та форми суспен-зованих елементів.

Дослідження залежності в'язкості крові від швидкості деформації зсуву (градієнта швидкості) свідчать про те, що кров не є ньютонівською рідиною. При великих градієнтах швидкості (наприклад, в артеріальних судинах) в'язкість крові наближається до в'язкості води, у той час як при малих значеннях швидкості деформації зсуву в'язкість у п'ять і більше разів перевищує в'язкість води (мал. 1.9б).

Мал. 1.9. Зміна в'язкості крові при зміні: а) форменного складу крові, б) швидкості деформації зсуву.

Величина відносної в'язкості крові може бути ви­користана у діагностиці захворювань (див. табл. 1.1). За­лежність коефіцієнта в'язкості від градієнта швидкості dυ/dy обумовлена здатністю еритроцитів до агрегації - ут­воренню "монетних стовпчиків" та їх конгломератів. Із збільшенням градієнта швидкості стовпчики руйнуються, і коефіцієнт в'язкості зменшується внаслідок дезагрегації та деформації еритроцитів.

Таблиця 1.1.

Відносна в'язкість крові Результат
4.2-6.0 Норма
<2.0 Анемія
>10.0 Поліцитимія

Зменшення в'язкості крові при її переході з венозного русла в артеріальне фізіологічне виправдане. У цьому ви­падку значно зменшуються витрати м'язової енергії міокар­ду на просування крові вздовж артеріального русла, в якому величини швидкостей деформації зсуву (а отже і сили внут­рішнього тертя) досить значні (вони у сотні разів пере­більшують значення останніх у венозній ділянці судинної системи).

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных