Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Организованность биосферы




В.И. Вернадский, рассматривая биосферу как геоло­гическую оболочку, ясно понимал, что структура этой обо­лочки не отражает всей сложности идущих в ней про­цессов. Поэтому он ввел понятие об организованности биосферы. Еще в 1931 году в работе «Об условиях по­явления жизни на Земле» Вернадский определил орга­низованность биосферы как устойчивость динамической системы, ее равновесие.

Организованность биосферы в геологическом времени подтверждается тем, что вся биосфера охватывается и тропосферой, и гидросферой, и литосферой, и живым ве­ществом. Эти части ее взаимопроникают и вза­имодействуют между собой, образуя единое целое (рис. 2).

 

БИОСФЕРА

Рис. 2. Взаимосвязь оболочек биосферы Земли

 

Таким образом, понятие «организованность» подра­зумевает, что окружающая природа не есть хаос разроз­ненных элементов, но представляет собой единое и связ­ное целое.

Организованность природы – это не только внешний эмпирический факт, но и ее основное свойство. Оно наиболее ярко выступает в явлении живого, где каж­дая крупица может рассматриваться как своеобразный микрокосмос.

Таким образом, организованность биосферы подразу­мевает единство, равноценность и связь ее частей. Организованность биосферы проявляется на разных уровнях. Различают термодинамический, физический, химический, биологический, парагенетический, энергети­ческий, планетный уровни организованности биосферы.

1.5. Устойчивость и саморегуляция в процессе развития биосферы

Биосфера Земли – открытая, сложная, многокомпо­нентная, саморегулирующаяся, связанная с космосом система живого вещества и минеральных соединений, образующая внешнюю оболочку планеты.

Биосфера является не только областью, в которой на планете Земля возникла и развивалась жизнь во всем многообразии ее форм. Живое вещество за время свое­го существования глубоко изменило первоначальную природу планеты, биологизировало ее. Жизнь сама при­спосабливала и оптимизировала среду. В стратосфере возник озоновый экран, защищающий живые существа от гибельного воздействия ультрафиолетовых лучей и других космических излучений.

Выветривание, почвообразование, делювиальные и аллювиальные наносы закрыли органо-минеральными покровами мелкозема монолитные, бесплодные, безвод­ные скалы. Эти процессы создали рыхлые горизонты, благоприятные по физическим и химическим свой­ствам для существования растений, особенно их кор­невых систем, и экологические ниши для животных. Фотосинтез растений явился механизмом накопления активной биохимической энергии в массах органичес­кого вещества в форме гумуса, ископаемых горючих, гарантирующих удовлетворение запросов организмов на случай стрессовых условий и неблагоприятных пе­риодов.

Живое вещество, создав почвенный покров, преодоле­ло ограниченность ресурсов азотно-углеродного, водно­го, воздушного и минерального питания. Неосинтез высо­кодисперсных минералов обеспечил в почвах физико-химическую поглотительную способность, тем самым закрепляя соединения N, Р, Са, К. Еще более интенсив­ное накопление макроэлементов (С, N, Р, Са, S, К) и мик­роэлементов (I, Zn, Сu, Со, Sе и т.д.) наблюдается в ходе биогенной аккумуляции в форме гумусово-органических соединений.

Возник и показал свою исключительную роль меха­низм сотрудничества – симбиоз – между растениями, животными, насекомыми, низшими беспозвоночными, микроорганизмами с образованием пищевых цепей. Этот механизм в биосфере позволяет обходиться не­большими запасами энергии и химических соединений. Но есть пределы этой устойчивости и саморегу­ляции. Если изменения в среде выходят за пределы периодических колебаний, к которым приспособлены организмы, то слаженность экосистем и биосферы в целом нарушается.

Жизнь, живое вещество, биосфера благодаря этим про­цессам, а также в связи с непрерывностью поступления кос­мической энергии развивалась на Земле по принципу са­моуправляемого расширенного воспроизводства. Так, в девоне существовало около 12 тыс. видов растений, в ка­менноугольном периоде – 27 тыс., в пермотриасе – 43 тыс., в юре – 60 тыс. Современная флора насчитывает около 300 тыс. видов (Ковда, 1983). Это направленное поступа­тельное развитие биосферы не было непрерывным. Ката­строфы (эпохи вулканизма, оледенения, опустынивания) нарушали, задерживали общий процесс расширенного вос­производства, но не могли остановить общий процесс все усложняющегося развития жизни и биосферы.

1.6. Понятие о биогеоценозе как элементарной структурной

единицы биосферы

Биогеоценоз – это взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом вещества и энергии (греч.: bios – жизнь, gi – гео – земля, koinos – общий). В основе понятия лежит определение академика В.Н. Сукачева, по которому биогеоценоз – «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая свою особую специфику взаимодей­ствия этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и дру­гими явлениями природы и представляющая собой внут­реннее противоречие, диалектическое единство, находя­щееся в постоянном движении и развитии».

В настоящее время термины «биогеоценоз» и «экосистема» часто рассматриваются как синонимы. Но понятие «биогеоценоз», предложенное В.Н. Сукачевым и относящееся к наземным живым системам, имеет определенные территориальные границы. Понятие «экосистема» – безразмерное и может включать пространство любой протяженности – от капли воды с живущими в ней микроорганизмами до всей биосферы в целом. Таким образом, понятие «биогеоценоз» по отношению к поня­тию «экосистема» – более частное. Однако на симпозиуме ЮНЕСКО по вопросу о функционировании земных эко­систем на уровне первичной продукции, проходившем в Копенгагене в 1965 году, условились об одинаковом зна­чении этих двух терминов.

Итак, биогеоценозы являются частями земной или вод­ной поверхности, однородной с точки зрения топографи­ческих, микроклиматических, ботанических, зоологичес­ких, почвенных, гидрологических и геохимических усло­вий. В этой системе круговорот веществ и поток энер­гии характеризуются определенной интенсивностью и направленностью. Отправной точкой круговорота ве­ществ являются фотосинтез и создание фитобиомассы растениями. Реальные размеры биогеоценозов на пла­нете варьируют весьма широко: от нескольких метров (микровпадины в степях и полупустынях, песчаные дюны и т.д.) до километров (биогеоценозы солончака, солон­ца, такыра, однородные участки степей, лесов и т.д.). Вертикальные размеры биогеоценозов варьируют так­же весьма широко: от нескольких сантиметров на ска­лах до нескольких десятков метров в тайге или в тропических лесах.

Биогеоценоз относительно устойчив во времени и тер­модинамически открыт в отношении притока и оттока вещества и энергии. Он имеет вход энергии и различ­ных веществ: солнечная энергия, минеральные элемен­ты горных пород, атмосферные выпадения, грунтовые воды. А также и выход энергии и биогенных веществ в атмосферу (тепло, кислород, углекислый газ и т.д.), ли­тосферу (гумусовые соединения, минералы, осадочные породы) и гидросферу (растворенные биогенные веще­ства грунтовых, озерных, речных вод).

Саморегулирующийся характер биосферы и биогео­ценозов является результатом автокаталитического свойства живого вещества, его способности поглощать и об­менивать вещества, расти и размножаться. Поток энер­гии и вещества в биогеоценозе идет от растений к тра­воядным животным, от последних – к хищникам, затем к низшим организмам и бактериям в почве. Именно травоядные начинают пищевую цепь организмов-потребителей и разрушителей органического вещества, созданного в процессе фотосинтеза. Отсюда первич­ным источником пищи и энергии для пищевой цепи организмов является фитомасса, созданная растениями. Зоомасса – вторичный продукт. Поэтому различают первичную и вторичную продуктивность биогеоценозов и ландшафтов.

В пищевой цепи организмов в биогеоценозе сущест­вует непрерывный поток энергии. На каждом новом зве­не этой цепи теряется 50–90 % энергии и биомассы, за­пасенной на предыдущем этапе. Возникает так назы­ваемая экологическая пирамида запасов энергии. Чем больше звеньев в пищевой цепи, тем выше экологическая пирамида и тем больше будет потеряно энергии в конечном звене (рис. 3).

 

  ОРЕЛ  
     
  ЗМЕИ  
     
  ЛЯГУШКИ  
     
  КУЗНЕЧИКИ  
 
ТРАВЫ
                     

Рис. 3. Пирамида пищевой цепи

 

Основным положением энергетики экосистем является необратимость биоэнергетических процессов. Поэто­му в применении к экосистемам (и в частности, к почвам) нельзя применять выражение «круговорот энергии», по­добно тому, как в биогеохимии и в почвоведении о кру­говороте веществ. Единственно правильный термин – «поток энергии», так как энергия первичной биологичес­кой продукции в дальнейшем только расходуется. Для пополнения и возобновления биомассы в экосистеме необходим постоянный приток энергии извне, в то вре­мя как притока атомов вещества может и не быть. Одни и те же атомы могут многократно циркулировать в био­геоценозе.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных