Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






L Характеристики Li-ion аккумуляторов




Современные Li-ion аккумуляторы имеют высокие удельные характеристики: 100-180 Втч/кг и 250-400 Втч/л. Рабочее напряжение - 3,5-3,7 В.

Если еще несколько лет назад разработчики считали достижимой емкость Li-ion аккумуляторов не выше нескольких ампер-часов, то сейчас большинство причин, ограничивающих увеличение емкости, преодолено и многие производители стали выпускать аккумуляторы емкостью в сотни ампер-часов.

Современные малогабаритные аккумуляторы работоспособны при токах разряда до 2 С, мощные - до 10-20С. Интервал рабочих температур: от -20 до +60 °С. Однако многие производители уже разработали аккумуляторы, работоспособные при -40 °С. Возможно расширение температурного интервала в область более высоких температур.

Саморазряд Li-ion аккумуляторов составляет 4-6 % за первый месяц, затем - существенно меньше: за 12 месяцев аккумуляторы теряют 10-20% запасенной емкости. Потери емкости у Li-ion аккумуляторов в несколько раз меньше, чем у никель-кадмиевых аккумуляторов, как при 20 °С, так и при 40 °С. Ресурс-500-1000 циклов.

Заряд Li-ion аккумуляторов.
Li-ion аккумуляторы заряжаются в комбинированном режиме: вначале при постоянном токе (в диапазоне от 0,2 С до 1 С) до напряжения 4,1-4,2 В (в зависимости от рекомендаций производителя), далее при постоянном напряжении. Первая стадия заряда может длиться около 40 мин, вторая стадия дольше. Более быстрый заряд может быть достигнут при импульсном режиме.

В начальный период, когда только появились Li-ion аккумуляторные батареи, использующие графитовую систему, требовалось ограничение напряжения заряда из расчета 4,1 В на элемент. Хотя использование более высокого напряжения позволяет повысить энергетическую плотность, окислительные реакции, происходившие в элементах такого типа при напряжениях, превышающих порог 4,1 В, приводили к сокращению их срока службы. Со временем этот недостаток ликвидировали за счет применения химических добавок, и в настоящее время Li-ion элементы можно заряжать до напряжения 4,20 В. Допустимое отклонение напряжения составляет лишь около ±0,05 В на элемент.

Li-ion аккумуляторные батареи промышленного и военного назначения должны иметь больший срок службы, чем батареи для коммерческого использования. Поэтому для них пороговое напряжение конца заряда составляет 3,90 В на элемент. Хотя энергетическая плотность (кВтч/кг) у таких батарей ниже, повышенный срок службы при небольших размерах, малом весе и более высокая по сравнению с батареями других типов энергетическая плотность ставят Li-ion батареи вне конкуренции.

При заряде Li-ion аккумуляторных батарей током 1С время заряда составляет 2-3 ч. Li-ion батарея достигает состояния полного заряда, когда напряжение на ней становится равным напряжению отсечки, а ток при этом значительно уменьшается и составляет примерно 3% от начального тока заряда (рис. 4).


Рис.4. Зависимость напряжения и тока от времени при заряде литий-ионного (Li-ion) аккумулятора

Если на рис. 4 изображен типовой график заряда одного из типов Li-ion аккумуляторов, то на рис. 5 процесс заряда показан более наглядно. При повышении тока заряда Li-ion батареи время заряда сколько-нибудь значимо не сокращается. Хотя при более высоком токе заряда напряжение на батарее нарастает быстрее, этап подзарядки после завершения первого этапа цикла заряда продолжается дольше.

В некоторых типах зарядных устройств для заряда литий-ионной аккумуляторной батареи требуется время 1 ч и менее. В таких зарядных устройствах этап 2 исключен, и батарея переходит в состояние готовности сразу после окончания этапа 1. В этой точке Li-ion батарея будет заряжена приблизительно на 70 %, и после этого возможна дополнительная подзарядка.


Рис.5. Зависимость напряжения и тока от времени при заряде Li-ion аккумулятора
ЭТАП 1 - Через аккумулятор протекает максимально допустимый ток заряда, пока напряжение на нем не достигнет порогового значения.
ЭТАП 2 - Максимальное напряжение на аккумуляторе достигнуто, ток заряда постепенно снижается до тех пор пока он полностью не зарядится. Момент завершения заряда наступает когда величина тока заряда снизится до значения 3% от начального.
ЭТАП 3 - Периодический компенсирующий заряд, проводящийся при хранения аккумулятора, ориентировочно через каждые 500 часов хранения.

Этап струйной подзарядки для Li-ion аккумуляторов неприменим из-за того, что они не могут поглощать энергию при перезаряде. Более того, струйная подзарядка может вызвать металлизацию лития, что делает работу аккумулятора нестабильной. Напротив, короткая подзарядка постоянным током способна компенсировать небольшой саморазряд Li-ion батареи и компенсировать потери энергии, вызванные работой ее устройства защиты. В зависимости от типа зарядного устройства и степени саморазряда Li-ion батареи такая подзарядка может выполнятся через каждые 500 ч, или 20 дней. Обычно ее следует осуществлять при снижении напряжения холостого хода до 4,05 В/элемент и прекращать, когда оно достигнет 4,20 В/элемент.

Итак, Li-ion аккумуляторы имеют низкую устойчивость к перезаряду. На отрицательном электроде на поверхности углеродной матрицы при значительном перезаряде становится возможным осаждение металлического лития (в виде мелко раздробленного мшистого осадка), обладающего большой реакционной способностью к электролиту, а на катоде начинается активное выделение кислорода. Возникает угроза теплового разгона, повышения давления и разгерметизации. Поэтому заряд Li-ion аккумуляторов можно вести только до напряжения, рекомендуемого производителем. При увеличенном зарядном напряжении ресурс аккумуляторов снижается.

Безопасной работе Li-ion аккумуляторных батарей должно уделяться серьезное внимание. В Li-ion батареях коммерческого назначения имеются специальные устройства защиты, предотвращающие превышение напряжения заряда выше определенного порогового значения. Дополнительный элемент защиты обеспечивает завершение заряда, если температура батареи достигнет 90 °С. Наиболее совершенные по конструкции батареи имеют еще один элемент защиты - механический выключатель, который срабатывает при увеличении внутрикорпусного давления батареи. Встроенная система контроля напряжения настроена на два напряжения отсечки - верхнее и нижнее.

Есть и исключения - Li-ion аккумуляторные батареи, в которых устройства защиты вообще отсутствуют. Это аккумуляторные батареи, в состав которых входит марганец. Благодаря его наличию, при перезаряде реакции металлизации анода и выделения кислорода на катоде происходят настолько медленно, что стало возможным отказаться от применения устройств защиты.

Сохранность Li-ion аккумуляторов. Все литиевые аккумуляторы характеризуются достаточно хорошей сохранностью. Потеря емкости за счет саморазряда 5-10 % в год.


Приводимые показатели следует рассматривать как некоторые номинальные ориентиры. Для каждого конкретного аккумулятора, например, разрядное напряжение зависит от тока разряда, уровня разряженности, температуры; ресурс зависит от режимов (токов) разряда и заряда, температуры, глубины разряда; диапазон рабочих температур зависит от уровня выработки ресурса, допустимых рабочих напряжений и т.д.

К недостаткам Li-ion аккумуляторов следует отнести чувствительность к перезарядам и переразрядам, из-за этого они должны иметь ограничители заряда и разряда.

Типичный вид разрядных характеристик Li-ion аккумуляторов изображен на рис. 6 и 7. Из рисунков видно, что с ростом тока разряда разрядная емкость аккумулятора снижается незначительно, но уменьшается рабочее напряжение. Такой же эффект появляется при разряде при температуре ниже 10 °С. Кроме этого, при низких температурах имеет место начальная просадка напряжения.


Рис.6. Разрядные характеристики Li-ion аккумулятора при различных токах


Рис.7. Разрядные характеристики Li-ion аккумулятора при различной температуре

Что касается эксплуатации Li-ion аккумуляторов вообще, то, учитывая все конструктивные и химические способы защиты аккумуляторов от перегрева и уже устоявшееся представление о необходимости внешней электронной защиты аккумуляторов от перезаряда и переразряда, можно считать проблему безопасности эксплуатации Li-ion аккумуляторов решенной. А новые катодные материалы часто обеспечивают еще большую термическую стабильность Li-ion аккумуляторов.

Безопасность Li-ion аккумуляторов. При разработке литиевых и литий-ионных аккумуляторов, как и при разработке первичных литиевых элементов, вопросам безопасности хранения и использования уделялось особое внимание. Все аккумуляторы имеют защиту от внутренних коротких замыканий (а в отдельных случаях - и от внешних коротких замыканий). Эффективным способом такой защиты является применение двухслойного сепаратора, один из слоев которого изготавливается не из полипропилена, а из материала, аналогичного полиэтилену. В случаи короткого замыкания (например, из-за прорастания дендритов лития к положительному электроду) за счет локального разогрева этот слой сепаратора подплавляется и становится непроницаемым, предотвращая, таким образом, дальнейшее прорастание дендритов.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных