Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Общие пути метаболизма, обмен углеводов




Выберите ОДИН наиболее правильный ответ:

1. Примером катаболического пути может служить: А. образование белков из аминокислот; Б. образование глюкозы из пирувата; В. образование жирных кислот и глицерола из жиров; Г. образование нуклеиновых кислот из нуклеотидов; Д. образование полисахаридов из моносахаридов

2. Потреблением энергии АТФ с образованием АДФ и фосфата сопровождается превращение: А. жиров в жирные кислоты и глицерол; Б. жирных кислот в ацетил-КоА; В. аминокислот в пируват; Г. ацетил-КоА в жирные кислоты; Д. белков в аминокислоты

3. Коферменты вступают в реакцию окислительного декарбоксилирования пирувата в следующей последовательности: А. ТДФ, липоевая кислота, ФАД, НАД, КоА-SH; Б. ТДФ, липоевая кислота, КоА-SH, ФАД, НАД; В. ТДФ, КоА-SH, НАД, ФАД, липоевая кислота; Г. НАД, ФАД, КоА-SH, липоевая кислота, ТДФ; Д. ТДФ, КоА-SH, ФАД, липоевая кислота, НАД

4. Ковалентно связанными коферментами пируватдегидрогеназного комплекса являются: А. ТДФ, липоевая кислота, HS-KoA; Б. ТДФ, липоевая кислота, ФАД; В. липоевая кислота, ФАД, НАД; Г. ТДФ, HS-KoA, НАД; Д. HS-KoA, ФАД, НАД

5. Диссоциирующими коферментами пируватдегидрогеназного комплекса являются: А. ТДФ и липоевая кислота; Б. липоевая кислота и HS-KoA; В. HS-KoA и НАД; Г. НАД и ФАД; Д. ФАД и ТДФ

6. Скорость пируватдегидрогеназной реакции увеличивается при: А. увеличении концентрации ацетил-КоА; Б. уменьшении концентрации АМФ; В. увеличении концентрации ГТФ; Г. снижении соотношения АТФ/АДФ; Д. увеличении соотношения НАДН/НАД+

7. Субстратным фосфорилированием сопровождается реакция цикла трикарбоновых кислот: А. превращение фумарата в малат; Б. переход сукцинил-КоА в сукцинат; В. превращение a-кетоглутарата в сукцинил-КоА; Г. переход цис-аконитата в изоцитрат; Д. превращение цитрата в цис-аконитат

8. Скорость цикла трикарбоновых кислот снижается при: А. увеличении концентрации оксалоацетата: Б. снижении соотношения НАДН/НАД+; В. увеличении соотношения АТФ/АДФ; Г. снижении соотношения НАДФН/НАДФ+; Д. увеличении концентрации АМФ

9. Синтез АТФ, не сопряжённый с переносом электронов ферментами дыхательной цепи, называется: А. свободным окислением; Б. окислительным фосфорилированием; В. субстратным фосфорилированием; Г. общим путём катаболизма Д. тканевым дыханием

10. Непосредственным акцептором электронов от НАДН в митохондриальной дыхательной цепи является: А. ФАД; Б. ФМН; В. убихинон; Г. цитохром с; Д. кислород

11. При переносе электронов в дыхательной цепи внутренней митохондриальной мембраны: А. концентрация протонов в межмембранном пространстве увеличивается; Б. концентрация протонов в матриксе митохондрий увеличивается; В. значение рН межмембранного пространства находится в щелочной среде; Г. ускоряется транспорт АТФ из межмембранного пространства в матрикс; Д. протоны перемещаются в матрикс против градиента концентрации

12. Энергия, выделяемая при переносе электронов в митохондриальной дыхательной цепи, используется для переноса: А. протонов из матрикса в межмембранное пространство против градиента концентрации; Б. протонов из межмембранного пространства в матрикс против градиента концентрации; В. АТФ из межмембранного пространства в матрикс; Г. неорганического фосфата из матрикса в межмембранное пространство; Д. АДФ из матрикса в межмембранное пространство

13. Сопряжение окисления и фосфорилирования в митохондриях характеризует: А. количество поглощённого кислорода; Б. отношение потреблённого неорганического фосфата к поглощённому кислороду; В. отношение поглощённого кислорода к потреблённому неорганическому фосфату; Г. отношение АТФ/АДФ; Д. количество образовавшихся молекул воды

14. Разобщение окисления и фосфорилирования в митохондриях означает, что: А. ускоряется образование АТФ из АДФ и Фн; Б. прекращается потребления кислорода, но происходит синтез АТФ; В. прекращается синтез АТФ, но происходит потребление кислорода; Г. прекращается потребление кислорода; Д. ускоряется распад АТФ до АДФ и Фн

15. Субстратом микросомального окисления является кислота: А. глутаминовая; Б. арахидоновая; В. аспарагиновая; Г. молочная; Д. яблочная

16. Увеличение скорости микросомального окисления субстратов происходит под действием: А. фенобарбитала; Б. гепарина; В. солей тяжелых металлов; Г. оксида углерода; Д. женских половых гормонов

17. В результате гидроксилирования в микросомальной системе печени, как правило: А. повышается гидрофильность лекарственных веществ; Б. увеличивается токсичность лекарственных веществ; В. замедляется выведение лекарственных веществ из организма; Г. усиливается накопление лекарственных веществ в тканях; Д. снижается суточная терапевтическая доза лекарственных веществ

18. Цитохром Р450, являющийся заключительным звеном монооксигеназной цепи: А. принимает электроны непосредственно от НАДФН; Б. активируется оксидом углерода (СО); В. специфичен к гидрофильным субстратам; Г. включает один атом из молекулы кислорода в окисляемый субстрат; Д. содержит гемовое железо с неизменной степенью окисления

19. Микросомальное окисление называется свободным, потому что: А. ферменты монооксигеназной цепи не имеют субстратной специфичности; Б. оно не сопряжено с фосфорилированием и генерацией АТФ; В. в этом процессе активированный кислород непосредственно внедряется в окисляемый субстрат; Г. цитохром Р450 катализирует не только гидроксилирование, но и реакции других типов; Д. источниками водорода в реакциях микросомального окисления являются как НАДФН, так и НАДН

20. Фермент лактаза синтезируется клетками: А. слюнных желез; Б. поджелудочной железы; В. слизистой желудка; Г. слизистой тонкой кишки; Д. слизистой толстой кишки

21. Образование НАДН в гликолизе происходит в реакции: А. глюкозо-6-фосфат ® фруктозо-6-фосфат; Б. глицеральдегид-3-фосфат ® 1,3-дифосфоглицерат; В. диоксиацетонфосфат ® глицеральдегид-3-фосфат; Г. 2-фосфоглицерат ® фосфоенолпируват; Д. пируват ® лактат

22. Протекание реакций промежуточного звена между аэробным гликолизом и циклом трикарбоновых кислот обеспечивает фермент: А. ацетил-КоА-синтетаза; Б. лактатдегидрогеназа; В. пируваткиназа; Г. цитратсинтаза; Д. пируватдегидрогеназа

23. Специфическую стадию аэробного дихотомического окисления глюкозы составляет: А. цикл трикарбоновых кислот; Б. образование рибулозо-5-фосфата; В. образование пирувата из глюкозы; Г. образование УДФ-глюкозы; Д. окислительное декарбоксилирование пирувата

24. Перенос водорода с цитоплазматического НАДН в митохондрии в процессе аэробного окисления глюкозы происходит при помощи: А. малата; Б. оксалоацетата; В. фосфоенолпирувата; Г. глицеральдегид-3-фосфата; Д. всех перечисленных соединений

25. Глюкозу, меченную 14С в 1-м положении, инкубировали в среде, содержащей ферменты пентозофосфатного пути окисления. Метка будет обнаружена: А. в СО2; Б. в рибулозо-5-фосфате; В. в рибозо-5-фосфате; Г. в ксилулозо-5-фосфате; Д. ни в одном из названных соединений

Тиаминдифосфат является коферментом фермента пентозофосфатного пути: А. глюкозо-6-фосфатдегидрогеназы; Б. транскетолазы; В. 6-фосфоглюконатдегидрогеназы; Г. 6-фосфоглюконолактоназы; Д. фосфопентозоизомеразы

27. Дефицит витамина Н (биотина) приводит к снижению активности фермента глюконеогенеза: А. фосфоенолпируваткарбоксикиназы; Б. пируваткарбоксилазы; В. глюкозо-6-фосфатазы; Г. фруктозо-1,6-дифосфатазы; Д. фосфоглицераткиназы

28. Транспортной формой оксалоацетата из митохондрий в цитозоль в процессе глюконеогенеза является: А. пируват; Б. фосфоенолпируват; В. лактат; Г. малат; Д. ацетил-КоА

29. Образование глюкозы в печени подавляется действием гормона: А. адреналина; Б. глюкагона; В. инсулина; Г. тироксина; Д. вазопрессина

30. Наибольшее суммарное количество гликогена в организме человека может быть обнаружено: А. в печени; Б. в почках; В. в скелетных мышцах; Г. в сердечной мышце; Д. в жировой ткани

31. Распад гликогена в мышцах не сопровождается повышением уровня глюкозы в крови, потому что в мышцах отсутствует фермент: А. фосфорилаза; Б. фосфоглюкомутаза; В. глюкозо-6-фосфатаза; Г. гексокиназа; Д. фосфоглюкоизомераза

Выберите ВСЕ правильные ответы:

1. Пировиноградная кислота в клетке образуется в реакциях: А. катаболизма жирных кислот; Б. катаболизма глицерола; В. катаболизма моносахаридов; Г. катаболизма аминокислот; Д. окисления лактата

2. Производными витаминов являются коферменты пируватдегидрогеназного комплекса: А. липоевая кислота; Б. коэнзим А; В. тиаминдифосфат; Г. НАД; Д.ФАД

3. В состав дыхательной цепи внутренней мембраны митохондрий входят: А. НАДН-КоQ-редуктазный комплекс; Б. цитохром с-оксидазный комплекс; В. КоQН2-цитохром с-редуктазный комплекс; Г. a-кетоглутаратдегидрогеназный комплекс; Д. пируватдегидрогеназный комплекс

4. В состав дыхательной цепи внутренней мембраны митохондрий входят: А. НАДН-КоQ-редуктазный комплекс; Б. пируватдегидрогеназный комплекс; В. КоQН2-цитохром с-редуктазный комплекс; Г. сукцинат-КоQ-редуктазный комплекс; Д. a-кетоглутаратдегидрогеназный комплекс

5. Компонентами митохондриальной цепи дыхания являются следующие переносчики электронов: А. коэнзим Q; Б. липоевая кислота; В. флавинмононуклеотид; Г. НАДФН; Д. цитохром с

6. Примеры использования АТФ в организме: А. трансмембранный перенос веществ по градиенту концентрации; Б. мышечное сокращение; В. генерирование биопотенциалов; Г. поддержание постоянства ионного состава в клетках; Д. биосинтез сложных органических молекул

7. К гомополисахаридам относятся: А. крахмал; Б. целлюлоза; В. гликоген; Г. мальтоза; Д. гепарин

8. К гетерополисахаридам относятся: А. гепарин; Б. глюкуроновая кислота; В. гиалуроновая кислота; Г. гликоген; Д. хондроитинсульфат

9. Молекула гиалуроновой кислоты состоит из чередующихся остатков следующих мономеров: А. глюкуроновая кислота; Б. N-ацетил-глюкозамин; В. N-ацетил-галактозамин-4-сульфат; Г. глюкуронат-2-сульфат; Д. N-ацетил-глюкозамин-6-сульфат

10. Молекула хондроитинсерной кислоты состоит из чередующихся остатков следующих мономеров: А. глюкуроновая кислота; Б. N-ацетил-глюкозамин; В. N-ацетил-галактозамин-4-сульфат; Г. глюкуронат-2-сульфат; Д. N-ацетил-глюкозамин-6-сульфат

11. Молекула гепарина состоит из чередующихся остатков следующих мономеров: А. глюкуроновая кислота; Б. N-ацетил-глюкозамин; В. N-ацетил-галактозамин-4-сульфат; Г. глюкуронат-2-сульфат; Д. N-ацетил-глюкозамин-6-сульфат

12. Углеводы в организме выполняют функции: А. входят в состав структурных компонентов клеток и межклеточного вещества; Б. участвуют в защите слизистых от механических повреждение; В. служат электроизолирующим материалом в миелиновых оболочках нервов; Г. обеспечивают энергетические потребности организма; Д. являются носителями генетической информации

13. Гетерополисахариды в организме выполняют функции: А. резерв углеводов в клетке; Б. защита поверхности суставов от механических повреждений; В. противосвёртывающее действие; Г. перенос генетической информации; Д. эмульгирующее действие

14. Ферменты, участвующие в гидролизе крахмала до глюкозы, вырабатываются: А. в слюнных железах; Б. в клетках эпителия тонкого кишечника; В. в поджелудочной железе; Г. в клетках эпителия толстого кишечника; Д. в клетках эпителия желудка

15. В желудочно-кишечном тракте происходит гидролиз: А. целлюлозы; Б. амилозы; В. амилопектина; Г. сахарозы; Д. лактозы

16. В переваривании крахмала в желудочно-кишечном тракте участвуют ферменты: А. сахараза; Б. амилаза; В..лактаза; Г. декстриназа; Д. целлюлаза

17. В реакциях переваривания дисахаридов в желудочно-кишечном тракте участвуют ферменты: А. лактаза; Б. декстриназа; В. мальтаза; Г. амилаза; Д. сахараза

18. Регуляторными ферментами гликолиза являются: А. гексокиназа; Б. фосфоглицераткиназа; В. фосфофруктокиназа; Г. лактатдегидрогеназа; Д. альдолаза

19. В реакциях пентозофосфатного пути дегидрированию подвергаются: А. рибулозо-5-фосфат; Б. 3-кето-6-фосфоглюконат; В. 6-фосфоглюконолактон; Г. 6-фосфоглюконат; Д. глюкозо-6-фосфат

20. НАДФН, образующийся в реакциях пентозофосфатного пути, используется: А. в синтезе холестерола; Б. в синтезе жирных кислот; В. в микросомальном окислении; Г. в синтезе гликогена; Д. в глюконеогенезе

21. Рибозо-5-фосфат, образующийся в реакциях пентозофосфатного пути, используется для синтеза: А. тиаминдифосфата; Б. флавинадениндинуклеотида; В. аденозинтрифосфата; Г. никотинамидадениндинуклеотида;Д. рибонуклеиновой кислоты

22. Реакции пентозофосфатного пути наиболее интенсивно протекают в: А. жировой ткани; Б. миокарде; В. коре надпочечников; Г. скелетной мышце; Д.печени

23. Основными функциями апотомического (пентозофосфатного) пути окисления глюкозы являются: А. образование субстратов для глюконеогенеза; Б. образование НАДН для дыхательной цепи; В. образование ацетил-КоА для биологических синтезов; Г. образование НАДФН для обеспечения восстановительных синтезов; Д. снабжение тканей пентозами для синтеза нуклеотидов

24. Реакции глюконеогенеза протекают: А. в эритроцитах; Б. в миокарде; В. в корковом слое почек; Г. в скелетной мышце; Д. в печени

25. К обходным реакциям глюконеогенеза относятся: А. образование 1,3-дифосфоглицерата из 3-фосфоглицерата; Б. образование оксалоацетата из пирувата; В. образование фосфоенолпирувата из оксалоацетата; Г. образование глюкозы из глюкозо-6-фосфата; Д. образование фруктозо-6-фосфата из фруктозо-1,6-дифосфата

26. В интенсивно работающей мышце образуются субстраты, используемые для синтеза глюкозы в печени: А. ацетил-КоА; Б. фосфоенолпируват; В. фосфодиоксиацетон; Г. лактат; Д. аланин

27. В реакциях синтеза гликогена из глюкозы используются следующие нуклеозидтрифосфаты: А. гуанозинтрифосфат; Б. цитидинтрифосфат; В. тимидинтрифосфат; Г. уридинтрифосфат; Д. аденозинтрифосфат

28. В синтезе гликогена из глюкозы принимают участие ферменты: А. глюкозо-6-фосфатаза; Б. фосфоглюкомутаза; В. глюкозо-1-фосфат-уридилтрансфераза; Г. гликогенветвящий фермент; Д. глюкокиназа

29. Мобилизация гликогена печени ускоряется: А. после приёма пищи, богатой углеводами; Б. при голодании; В. при стрессовых ситуациях; Г. в интервалах между приёмами пищи; Д. при интенсивных мышечных нагрузках

30. У подопытного животного, помещённого на диету с повышенным содержанием углеводов, в тканях интенсифицируются метаболические пути:А. глюконеогенез; Б. синтез жиров; В. дихотомическое окисление глюкозы; Г. синтез гликогена; Д. апотомическое окисление глюкозы






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных