Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Что позволено Юпитеру…», или почему одни микроконтроллеры надежнее других




 

В статье автор рассматривает некоторые аспекты, на которые разработчикам следует обратить внимание при выборе микроконтроллера для применений, отвечающих высоким требованиям надежности и безопасности.

 

По роду своей профессиональной деятельности в дистрибьюторской компании ООО «Элтех» автору приходится обсуждать проблемы разработки устройств со многими отечественными производителями электроники. В ходе этих обсуждений выясняется, что российские разработчики используют для решения своих задач микроконтроллеры всех производителей, представленных на электронном рынке. Для некоторых производителей вполне подходят микроконтроллеры так называемого «коммерческого» исполнения. Но есть производители, для которых одним из важнейших критериев выбора электронного компонента является его надежность. Прежде всего, это специалисты, работающие в области производства медицинской техники, лифтового оборудования, автомобильной электроники.

 

Эксперимент

 

В 2006 году в нашу фирму обратился Михаил Черепанов — разработчик компании «Свей» («Свей» — российский производитель промышленной электроники). Вот текст его письма:

«История началась с того, что от заказчиков поступили жалобы на то, что наши цифровые преобразователи (построенные на MSP430F148IPM) периодически «зависают» и не отвечают на запросы до тех пор, пока не будут перезагружены путем снятия и повторной подачи напряжения питания.

Были предположения, что «зависание» происходит из-за наличия импульсных помех (на электрических подстанциях это обычное явление). Чтобы воспроизвести ситуацию, я изготовил генератор помех (рис. 1).

 

 

 

В результате испытаний наши преобразователи были доработаны следующим образом:

1) Вместо кварцевого резонатора установлен кварцевый генератор.

2) Установлен внешний сторожевой таймер, так как в MSP430F148 он работает от того же кварца и так же оказывается неэффективным.

После чего сбои больше не происходили.

Позже наша продукция успешно прошла испытания (для изделий, подлежащих обязательному декларированию соответствия) на ЭМС по:

ГОСТ Р 51317.4.2.

ГОСТ Р 51317.4.3.

ГОСТ Р 51317.4.4.

ГОСТ Р 51317.4.11.

 

Для себя я определил минимальные требования для используемого микроконтроллера:

1) Испытания генератором помех.

2) Если используется внутренний сторожевой таймер, то он должен работать сразу после включения микроконтроллера и тактироваться собственным генератором.

3) Документация должна быть «дружественная», с примерами конфигурирования периферии.

4) Наличие доступных отладочных средств (в пределах $200).

5) Если требуется USB, Ethernet, TCP, то должна быть соответствующая готовая библиотека, а лучше RTOS с поддержкой оных».

 

Итак, наш клиент просил помочь подобрать ему микроконтроллер, устойчивый к сильным электромагнитным полям. Мы предложили устройства NEC, зная, что эти микроконтроллеры находят широкое применение в автоэлектронике, где электромагнитная обстановка очень сложная.

Было представлено несколько оценочных комплектов. Тогда заказчик сказал, что он хочет проверить их искровым генератором. Честно говоря, мы немного волновались, как пройдут эти испытания, однако такие условия вполне соответствуют реальным автомобильным ситуациям, когда происходит пробой высоковольтного провода. При этом электроника должна продолжать исправно работать.

Данный метод проверки был достаточно грубым, ведь оценочные комплекты не предназначены для таких испытаний. Мы понимали, что в этом эксперименте есть известный риск, и, возможно, наши «оценочники» даже могут выйти из строя после подобного испытания. Но, имея достаточный опыт работы с этими устройствами и учитывая опыт наших заказчиков, мы решили, что они выполнены надлежащим образом и будут работать так, как положено.

Мы предоставили два оценочных комплекта:

Low Pin Count – Do it!, построенный на основе 8-разрядного UPD78F9222;

EB-V850ES/HG2-EE, построенный на основе 32-разрядного UPD70F3707.

 

Искровой разряд производился в непосредственной близости с оценочными комплектами.

Схематично процесс тестирования изображен на рис. 2.

 

 

 

Оба оценочных комплекта работали без сбоев, даже когда искра приближалась на расстояние порядка 5 см. Заказчик сообщил, что подобным образом он проверил более 10 различных оценочных комплектов. Мы попросили его предоставить результаты этих экспериментов. Далее они будут приведены без комментариев, «как есть».

Через некоторое время заказчик провел еще один, можно сказать, более «варварский» эксперимент. Однако его результаты также интересны. Он рукой касался выводов работающего кварцевого генератора. В таких условиях из всех перечисленных микроконтроллеров, тактируемых от внешнего генератора, работал только один — uPD70F3707 (NEC). Однако, справедливости ради, следует заметить, что при прикосновении демонстрационная программа заметно замедляла скорость своего выполнения. Причина такого «поведения» микроконтроллера uPD70F3707 будет объяснена далее.

Давайте попытаемся понять, благодаря чему семейство V850ES/HG2 (к которому принадлежит микроконтроллер uPD70F3707) оказалось столь «живучим». Если внимательно рассмотреть некоторые периферийные узлы, то все постепенно становится на свои места.

 

Сторожевой таймер и тактовые генераторы

 

Проблемы, с которыми столкнулся наш клиент, были вызваны тем, что при воздействии сильных электромагнитных помех возможен срыв генерации кварцевого генератора, а так как в микроконтроллере MSP430F148 сторожевой таймер тактируется от того же самого опорного генератора, то при остановленном опорном генераторе сторожевой таймер уже не может «разбудить» микроконтроллер [1]. Для того чтобы предотвратить эту ситуацию, во всех микроконтроллерах NEC сторожевой таймер тактируется от отдельного внутреннего кольцевого генератора. Кольцевой генератор представляет собой нечетное число инверторов, соединенных в кольцо так, что выход одного инвертора идет на вход следующего. Срыв генерации кольцевого генератора практически невозможен. Следует отметить, что во всех микроконтроллерах семейства V850 от NEC запуск процессорного ядра происходит от дополнительного встроенного кольцевого генератора, и только убедившись в том, что кварцевый генератор запустился, вы можете переключить тактирование на «кварц».

 

Монитор тактовой частоты (Clock Monitor)

 

Монитор тактовой частоты следит за наличием генерации тактового генератора, использующего внешний кварцевый резонатор. В случае если генерация пропадает, генерируется внутренний сигнал сброса RESCLM и устанавливается флаг RESF.CLMRF [2]. После выхода из режима сброса микроконтроллер анализирует этот флаг и «понимает», что возникли проблемы с внешним тактовым генератором, после чего ядро запускается от одного из внутренних тактовых генераторов. В зависимости от семейства может быть 1 или 2 генератора, однако их частота, как правило, всегда меньше, чем частота генератора, использующего внешний резонатор.

Именно поэтому после прикосновения пальцем микроконтроллер uPD70F3707 продолжал работать, но уже значительно «медленнее», что и констатировал Михаил Черепанов из компании «Свей».

Интересно, что в той или иной степени это устройство реализовано и в других микроконтроллерах. Однако, если используемый тактовый генератор задается при программировании FLASH и не может быть изменен программно, то сценарий запуска от альтернативного внутреннего генератора, описанный выше, реализовать уже невозможно.

Кроме семейства V850ES/Hx2, этот узел имеют также семейства, специально разработанные для приложений управления электродвигателями (V850E/IA3, IA4, IF3, IG3; V850ES/IK1, IE2), для автомобильных приборных панелей (V850E/Dx3), для бортовой электроники с CAN-интерфейсом (V850ES/Sx2, Sx2-H, Sx3, Fx2, Fx3, Fx3-L), а также V850ES/Kx1+, Jx2, Jx3, Jx3-L, Hx2 и Hx3.

Следует отметить, что в некоторых других микроконтроллерах (как правило, в 8- и 16-разрядных) инженеры NEC вместо монитора тактовой частоты используют оконный сторожевой таймер. Он имеет совершенно иной принцип работы, однако это периферийное устройство можно использовать с той же целью, что и монитор тактовой частоты, то есть он может отслеживать факт исчезновения тактовых импульсов «внешнего» опорного генератора и позволяет микроконтроллеру переключиться на внутренний генератор.

 

Разделение шин питания

 

Все 32-разрядные микроконтроллеры NEC, упоминавшиеся ранее, и многие 8-разрядные имеют раздельные шины питания для внутренних периферийных устройств, процессорного ядра и цепей портов ввода/вывода. На рис. 3, 4 схематично показано такое разделение.

 

 

 

При правильной развязке шины питания ядра и портов ввода/вывода помехи, наведенные на портах ввода/вывода, не попадают в цепи питания периферийных устройств и ядра и повышают электромагнитную устойчивость (EMS).

Так, например, в оба списка (табл. 1, 2) попали микроконтроллеры с ядром АРМ.

 

Таблица 1. Оценочные комплекты при проверке работали без сбоев

 

Название Описание
uPD78F9222 оценочный комплект Low Pin Count – Do it!, 2-слойная плата, проверена с кварцем и внешним генератором от NEC Electronics
uPD70F3707 оценочный комплект EB-V850ES/HG2-EE от NEC Electronics
TMS320F2806 2-слойная плата, с внешним генератором
ADUC7026BSTZ62 макетная плата, с кварцем
ATMEGA32-16PU навесной монтаж на ножках микросхемы, с кварцем
AT89C51-24PI 2-слойная плата, с кварцем
Z8F2421AN020EC 2-слойная плата, с кварцем
EZ80F91AZ050SC отладочный комплект eZ80F910200ZCO, 4-слойная плата, с кварцем
MC56F8322VFB60 отладочный комплект MC56F8300DSK, 2-слойная плата, видимо, с внутренним RC-генератором
MC9S12NE64 отладочный комплект DEMO9S12NE64
CY8C21x34 Cypress; отладочный набор CY3212 – CapSense, 2-слойная плата, внутренний RC-генератор

 

Таблица 2. Оценочные комплекты, которые при проверке имели сбои тестовой программы

Название Описание
C8051F064 Silicon Labs; 2-слойная плата, работа от кварца
MSP430F148IPM 2-слойная плата, с кварцем 8 МГц
LPC2129 отладочная плата
LPC2148FBD64 2-слойная плата, с внешним генератором
LPC2148 отладочный комплект от Olimex, на 2-слойной плате, с кварцем
TMS470R1A256 KickStart Development Board от IAR на TMS470R1A256, c кварцем
AT91SAM7S128 отладочный комплект от Olimex

 

Без сбоев работали микроконтроллеры ADUC7026BSTZ62, в то время как в «черный список» попали микроконтроллеры с ядром АРМ от NXP (LPC2148). Если исследовать цепи питания ядра, периферийных устройств и портов ввода/вывода, можно отметить, что микроконтроллер от Analog Devices, также «устоявший» против искры [3], имеет структуру питания, аналогичную V850ES/Hx2 от NEC. A именно развязанные шины питания ядра и портов ввода/вывода (рис. 5, 6).

 

 

 

Инженеры NXP при создании LPC2148FBD64 [4] ограничились только разделением аналоговых и цифровых цепей питания (рис. 7).

 

 

Даже в микроконтроллерах, анонсированных как предназначенные для автомобильного применения, таких как AT90CAN32/64/128; ATmega164P/324P/644P и ATmega32M1/64M1/32C1/64C1, разделение шин питания портов ввода/вывода и шин питания ядра не предусмотрено. В результате возрастает возможность отказа из-за помех, наведенных по цепям ввода/вывода в ответственных применениях.

Микроконтроллер MSP430F148, который был использован в разработке, описанной Михаилом, также не имеет разделения шин питания ядра и портов ввода/вывода.

Можно также вспомнить еще одного очень популярного производителя микросхем — компанию Microchip. Исследования с микроконтроллерами данного производителя не проводились, однако, если посмотреть на них с точки зрения разделения шин питания, то в определенном смысле концепция развязки портов ввода/вывода и периферийных устройств реализована в семействе PIC24FJ64GA/128GA/256GA. На рис. 8 видно, что цепи питания ядра VDDCORE и портов ввода/вывода VDD разделены. Однако общий провод VSS остался гальванически не развязанным для этих двух цепей питания. По предварительным оценкам, помехозащищенность этих микроконтроллеров будет ниже, чем у ADUC7026 от ADI или V850 от NEC.

 

Тактовый генератор с расширенным спектром (SSCG)

 

Следует обратить внимание и на возможность использования тактового генератора с расширенным спектром. Такой генератор имеет частотно-модулированные колебания. «Пик» АЧХ, характерный для генератора гармонических колебаний, под воздействием частотной модуляции «размазывается» и превращается в «полку». Глубину и период частотной модуляции сигнала генератора SSCG можно изменять. Таким генератором наделены микроконтроллеры семейств V850E/ME2, Dx3, V850ES/Hx3, Fx3, V850E2/ME3 от NEC. Его применение позволяет уменьшить более чем на 10 дБ электромагнитную эмиссию (EME), излучаемую генератором, и, следовательно, уменьшить чувствительность к внешним электромагнитным помехам (EMS) на частотах работы тактового генератора (рис. 9).

 

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных