Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Закон одинарных элементов.




 

1 * X = X

0 * X = 0

1 + X = 1

0 + X = X

 

Этот закон непосредственно следует из приведённых выше выражений аксиом алгебры логики. Верхние два выражения могут быть полезны при построении коммутаторов, ведь подавая на один из входов элемента "2И" логический ноль или единицу можно либо пропускать сигнал на выход, либо формировать на выходе нулевой потенциал.

Второй вариант использования этих выражений заключается в возможности избирательного обнуления определённых разрядов многоразрядного числа. При поразрядном применении операции "И" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды единичный или нулевой потенциал. Например, требуется обнулить 6, 3 и 1 разряды. Тогда:

 

 

В приведённом примере отчётливо видно, что для обнуления необходимых разрядов в маске (нижнее число) на месте соответствующих разрядов записаны нули, в остальных разрядах записаны единицы. В исходном числе (верхнее число) на месте 6 и 1 разрядов находятся единицы. После выполнения операции "И" на этих местах появляются нули. На месте третьего разряда в исходном числе находится ноль. В результирующем числе на этом месте тоже присутствует ноль. Остальные разряды, как и требовалось по условию задачи, не изменены.

Точно так же можно записывать логические единицы в нужные нам разряды многоразрядного двоичного числа. В этом случае необходимо воспользоваться нижними двумя выражениями закона одинарных элементов. При поразрядном применении операции "ИЛИ" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды нулевой или единичный потенциал. Пусть требуется записать единицы в 7 и 6 биты числа.

Тогда:

 

 

Здесь в маску (нижнее число) мы записали единицы в седьмой и шестой биты. Остальные биты содержат нули, и, следовательно, не могут изменить первоначальное состояние исходного числа, что мы и видим в соответствующих разрядах результирующего числа под чертой.

Первое и последнее выражения закона одинарных элементов позволяют использовать логические элементы с большим количеством входов в качестве элементов с меньшим количеством входов, если в схеме уже есть такие свободные элементы и не хочется вводить в состав принципиальной схемы дополнительные микросхемы. Для этого неиспользуемые входы логического элемента "И" должны быть подключены к источнику питания, как это показано на рисунке 6.1.

 

Рисунок 6.1 – Схема "2И-НЕ", реализованная на элементе "3И-НЕ"

 

В схеме "ИЛИ" неиспользуемые входы должны быть подключены к общему проводу схемы, как это показано на рисунке 6.2.

 

 

Рисунок 6.2. – Схема" НЕ", реализованная на элементе "2И-НЕ"

 

Законы отрицания.

1. Закон дополнительных элементов:

х+х=1

х*х=0

2. Двойное отрицание:

 

 

 

Выражения этих законов широко используется для минимизации логических схем. Если удаётся выделить из общего выражения логической функции такие подвыражения, то можно сократить необходимое количество входов элементов цифровой схемы, а иногда и вообще свести всё выражение к логической константе.

 

3. Закон отрицательной логики:

 

 

 

Закон отрицательной логики справедлив для любого числа переменных. Этот закон позволяет реализовывать логическую функцию "И" при помощи логических элементов "ИЛИ "и наоборот: реализовывать логическую функцию "ИЛИ" при помощи логических элементов "И". Это особенно полезно в ТТЛ схемотехнике, так как там легко реализовать логические элементы "И", но при этом достаточно сложно реализуются логические элементы "ИЛИ". Благодаря закону отрицательной логики можно достаточно просто реализовывать элементы "ИЛИ" на логических элементах "И". На рисунке 6.3 показана реализация логического элемента "2ИЛИ" на элементе "2И-НЕ" и двух инверторах.

 

Рисунок 6.3 – Логический элемент "2ИЛИ", реализованный

на элементе "2И-НЕ"

 

То же самое можно сказать и о схеме монтажного "ИЛИ". В случае необходимости его можно превратить в монтажное "И", применив инверторы на входе и выходе этой схемы.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных