Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Виды мышечной ткани 1 страница




Гладкая мышечная ткань

Основная статья: Гладкие мышцы

Состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 20—500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Поперечно-полосатая скелетная мышечная ткань

Основная статья: Скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50—100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Поперечно-полосатая сердечная мышечная ткань

Основная статья: Сердечная мышца

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы (по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма. Существует также другой межклеточный контакт - анастомозы (впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша). Особым свойством этой ткани является автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной (атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов - секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

3). Физиотерапия. Ультразвуковая терапия. Микроволновая терапия.

Физиотерапия (греч. physis природа + therapeia лечение; синоним: физическая терапия, физикальная терапия, физиатрия) — область медицины, изучающая физиологическое и лечебное действие природных и искусственно создаваемых физических факторов и разрабатывающая методы использования их с профилактическими и лечебными целями; совокупность физических методов лечения и их практическое применение.

Наибольшее число методов объединяет электролечение (методы с использованием электрического поля, постоянного, переменного, непрерывного и прерывистого электротоков, переменного магнитного поля, электромагнитных полей).

В электротерапии используют фарадизацию, гальванизацию, аппараты для стимуляции нервов и мышц, дарсонвализацию, диатермию, микроволновую терапию, магнитотерапию; для светолечения - ультрафиолетовое и инфракрасное облучение.

Физиотерапевтические процедуры используют главным образом для лечения парезов, параличей, болезней суставно-связочного аппарата, кожи, органов дыхания, нарушений обмена веществ. Применяют такие виды физиотерапии, как электротерапия, светотерапия, грязетеплолечение, гидротерапия, массаж и другие методы.
Основные методы физиотерапии показаны почти при всех заболеваниях внутренних органов; а противопоказания к ним носят относительный характер. Они базируются на принципах индивидуализации, динамичного, комплексного, курсового применения.
Ультразвуковая терапия – это лечебное применение механических колебаний сверхвысокой частоты. Основные факторы воздействия:
механический – вибрационный микромассаж тканей на клеточном уровне в результате которого происходит стимуляция жизнеспособности и обменных процессов в ткани;
тепловой – образование в тканях "глубокого" тепла, которое усиливает обменные процессы, улучшает кровообращение, способствует рассасыванию рубцов и уменьшению отеков;
физико-химический – ускорение скорости течения химических реакций в тканях, что способствует восстановлению и ремоделированию ткани.

Комбинированная терапия – это сочетание в одном приборе методов электро- и ультразвуковой терапии.

Микроволновая терапия - это один из основных методов электролечения, при котором больного облучают электромагнитными волнами СВЧ диапазона, используя энергию электромагнитного поля СВЧ небольшой мощности для лечения многих заболеваний. Микроволны (микрорадиоволны, СВЧ- колебания) занимают промежуточное место между волнами ультравысокой частоты и инфракрасными лучами. Этим и обусловлены физические свойства микроволн, характерные как для радиоволн ультравысокой частоты (способность проникать в биологические ткани), так и для инфракрасных лучей (отражение, преломление, поглощение биологическими тканями).

 

1) Ионизирующее радиоактивное излучение и его биологическое действие.

Радиоактивность (альфа-, бета-, гамма-излучение) и жесткое рентгеновское излучение, а так же потоки протонов и нейтронов объединяются под общим названием ионизирующего излучения. К ионизирующему излучению относят так же потоки протонов и нейтронов. Скорость и энергия протонов, выбрасываемых при ядерных реакциях, проникающая и ионизирующая способность этих частиц такие же, как и у альфа - частиц. При соударении нейтронов с ядрами атомов может происходить их упругое рассеяние, неупругое рассеяние и захват нейтрона ядром (радиационный захват).Действие ионизирующих излучений может вызвать так же нарушение в структуре молекул веществ. В качестве примера можно указать радиолиз воды, который заключается в ионизации и последующем распаде ионизированной молекулы воды с образованием ненасыщенных радикалов Н и ОН, не несущих электрических зарядов, но имеющих ненасыщенные валентности, и поэтому обладающие исключительно высокой химической активностью, при этом образуются также соединения типа Н2О2 или НО2 (гидропероксид), являющиеся сильными окислителями.

2)Сократительный аппарат мышц. В миофибриллах (Рис.1) различают: А -зону - темные полосы, которые в поляризованном свете дают двойное лучепреломление, т.е. обладают свойством анизотропии (отсюда и название: А -зона), I -зону - светлые полосы, не дающие двойного лучепреломления, то есть изотропные (отсюда название: I -зона). В области I-зоны проходит темная узкая полоса – Z-диск. Промежуток между двумя Z-дисками называется саркомером и является элементарной сократительной единицей мышечной клетки. Саркомер - это упорядоченная система толстых и тонких нитей, расположенных гексагопально в поперечном сечении. Толстая нить имеет толщину - 12 нм и длину - 1,5 мкм и состоит из белка миозина. Тонкая нить имеет диаметр 8 нм, длину 1 мкм и состоит из белка актина, прикрепленного одним концом к Z-диску.

3) Ампуль - терапия. Микротоковая терапия. Магнитотерапия. Лазерная терапия.

Токи средней частоты: двухполюсный ток средней частоты - амплипульс-терапия, токи средней частоты для мышечной стимуляции

Токи низкой частоты: гальванический ток. Ультразвук: раздельное и одновременное лечение, частота 1 МГц.

Лечебным действием амплипульс-терапии является влияние её на чувствительную сферу нервной системы. Возбуждающее действие колебаний тока, частота которых близка к частоте потенциалов действия нервов и мышц, создаёт ритмически упорядоченный поток импульсации с рецепторов в ЦНС, что ощущается больным как вибрация. Этот поток, перекрывая болевую импульсацию, прекращает или уменьшает болевой синдром, ведёт к значительному улучшению крово- и лимфообращения в поражённой области, способствует уменьшению венозного застоя, ишемии, отёчности тканей, активации обменных процессов. Синусоидальные модулированные токи в зависимости от способа и параметров применяемых воздействий оказывают разнонаправленное влияние на тонус и сократительную способность мышц. Это используется не только при патологии нервно-мышечной системы, например, при парезах и параличах, когда проводится электростимуляция нервов и мышц, но и для восстановления функции многих органов и систем.

В частности, такие воздействия применяются для повышения тонуса атоничного желчного пузыря при холециститах, для восстановления запирательной функции кардии, для изгнания камней из мочеточников, для восстановления двигательной активности маточных труб при трубном бесплодии, для коррекции обменных процессов и улучшения функции поджелудочной железы, для улучшения дренажной функции бронхов при хронических бронхолёгочных заболеваниях и др.

Микротоковая терапия — комплексный метод воздействия на организм модулированными импульсами электрического тока сверхмалой амплитуды. Микротоки осуществляют мягкое воздействие на эпидермис, дерму, подкожную клетчатку, сосуды, мышцы. Используя микротоки, производят выделение белков, аминокислот, липидов, выведение продуктов обмена веществ. Микротоки оказывают противовоспалительное действие, нормализуется работа сальных желез. Магнитотерапия – это применение в лечебных целях постоянного, переменного или импульсного низкочастотного магнитных полей. В отличие от высокочастотных электромагнитных полей при магнитотерапии практически отсутствуют или сведены до минимума тепловые эффекты внутренних тканей, что позволяет применять ее при ряде заболеваний, не показанных для других видов физиотерапии.. Известно, что ткани организма диамагнитны, т. е. под влиянием магнитного поля не намагничиваются, однако многим составным элементам тканей (например, воде, форменным элементам крови) могут в магнитном поле сообщаться магнитные свойства.

Магнитно-резонансная терапия (индуктотермия) – это использование в лечебных целях высокочастотных магнитных полей. Они индуцируют вихревые токи в тканях, за счёт чего создаётся тепло, которое, в свою очередь, снижает эффективность терморегуляционных механизмов. Лазерная терапия - это метод лечения основанный на медицинском применении света низкой частоты, не вызывающего прогревания тканей более чем на 1 градус Цельсия, от лазерных источников оптического излучения. Лазер – источник когерентного оптического излучения высокой плотности и направленности. Свет от лазерного терапевтического аппарата отличается от света обычной лампочки тем, что он:

• монохроматичен, т.е. можно лечить одной заданной длиной волны;
• поляризован, т.е. не рассеивается в окружающем пространстве;
• обладает ультранизкой тепловой энергией;
• легко дозируем, что достигается изменением частотно-временных характеристик;
• проникает через кожу на глубину до 5-7 см, что позволяет напрямую лечить то, что должно лечиться.
Но самым главным является то, что неосязаемый по своей природе квант лазерного света обладает великолепным набором лечебных эффектов:
• подавляет аллергические реакции,
• восстанавливает систему защиты (иммунитет),
• улучшает кровообращение,
• восстанавливает обмен веществ,
• освобождает организм от солей и шлаков,
• оказывает мощное обезболивающее и противовоспалительное действия,
• оказывает противоатеросклеротическое действие.

Внутривенное лазерное облучение - способ высокоэффективного воздействия низкоинтенсивного лазерного излучения на организм человека. Используется в кардиологии, пульмонология, эндокринологии, гастроэнтерологии, гинекологии, урологии, дерматологии.

Источником излучения является полупроводниковый лазер с длиной волны 0,63 мкм, при проведении процедуры используются стерильные одноразовые световоды с иглой.

Наиболее действенным методом лазерной терапии является сочетание наружного воздействия и внутреннего (внутривенной лазерной терапии). При наружном применении лазерный луч направляется на участок тела, под которым находится больной орган. Свет проникает сквозь ткани в глубину и стимулирует обмен веществ в поражённых тканях. При внутривенном лечении, через стерильный тонкий светопроводник, который вводится в вену руки, лазерный луч воздействует на кровь. В результате низкоинтенсивного облучения кровяных телец, отвечающих за снабжение тканей кислородом и за надёжную иммунную защиту, во всех «уголках» организма, куда попадает «активированная» кровь, стимулируются процессы регенерации, энергообмена и обмена веществ. Активируются угнетённые функции саморегуляции организма, и он из состояния обречённого бездействия переходит к активной борьбе за выживание, как бы лечит себя сам

 

1)Поглощенная и экспозиционная доза. Мощность дозы. Единицы измерения.Поэтому основной величиной, характеризующей действие ионизирующего излучения на вещество, является энергия излучения, поглощенного единицей массы вещества за время облучения. Эта величина называется дозой излучения или поглощенной дозой излучения .

Экспозиционную дозу, или дозу облучения определяют по ионизирующему действию излучения в воздухе. Рентгену дают определение: это доза рентгеновского или - излучений, которое в результате полной ионизации 1 см3 чистого сухого воздуха при 00С и нормальном давлении образует округленно два млрд. пар ионов. Для количественной характеристики действия излучения водится понятие мощности дозы излучения Р. Мощность дозы излучения есть величина, измеряемая дозой излучения, поучаемой объектом за единицу времени. При достаточно равномерном действии излучения мощность дозы Р численно равна отношению дозы излучения к промежуткам времени действия излучения: .Единицами мощности дозы излучения являются: для поглощенной дозы –ватт на кг (Вт/кг) и рад в секунду (рад/с); для экспозиционной дозы – ампер на кг (А/кг) и рентген в час (Р/ ч) или микрорентген в секунду (мкР/ с). Относительная биологическая эффективность.Если известна экспозиционная доза D0 в рентгенах, которой облучается объект, то с помощью переходного коэффициента f, который обычно определяется опытным путем на моделях (фонтомах), можно найти поглощенную в объекте дозу в радах:

Коэффициент f зависит главным образом от атомного номера и плотности вещества объекта, и в меньшей степени – от энергии фотонов. Например, для воды соответственно для мягких тканей человека коэффициент f мало зависит от энергии фотонов и округленно может быть принят равным единице (f = 1).Биологическое действие различных видов ионизирующего излучения отличается. В связи с этим в дозиметрию вводится величина, называемая биологической дозой излучения Dб. Единицей ее является биологический эквивалент рада - бэр. Бэр равен количеству энергии любого вида ионизирующего излучения, которое по своему биологическому действию эквивалентно 1 рад рентгеновского или гамма – излучения. Биологическая доза излучения в Берах численно равна произведению поглощенной дозы в радах на коэффициент, называемой относительной биологической эффективностью излучения (ОБЭ):

2) Основные положения модели скользящих нитей: 1. Длины нитей актина и миозина в ходе сокращения не меняются. 2. Изменение длины саркомера при сокращении - результат относительного продольного смещения нитей актина и миозина. 3. Поперечные мостики, отходящие от миозина, могут присоединяться к комплементарным центрам актина. 4. Мостики прикрепляются к актину не одновременно. 5. Замкнувшиеся мостики подвергаются структурному пе-реходу, при котором они развивают усилие, после чего происходит их размыкание. 6. Сокращение и расслабление мышцы состоит в нарастании и последующем уменьшении числа мостиков, совершающих цикл замыкaние - размыкание. 7. Каждый цикл связан с гидролизом одной молекулы АТФ. 8. Акты замыкания-размыкания мостиков происходят не зависимо друг от друга.

3) Подвижность ионов Фазы гетерогенной системы придут в движение вследствие взаимодействия с электрическим полем, если к системе приложить постоянную разность потенциалов. Движение частиц дисперсной фазы в электрическом поле по направлению к противоположно заряженному электроду называется электрофорезом. Электрофорез был открыт Ф. Рейссом в 1807 г

Электрофорез это движение взвешенных частиц (пузырьков газа, коллоидных частиц и макромолекул) в жидкости под действием электрического поля. Метод, сочетающий воздействие на организм постоянного тока и введение лекарственных веществ, носит название лечебного электрофореза или ионогальванизации.

Профессор В. Виленский применил постоянный ток в сочетании с лекарственными веществами впервые в России в 1859 году, теоретические обоснования нашли подтверждение в исследованиях физика, невропатолога, психиатра А.Б. Щербака.

Электрофорез получил широкое применение в современной медицине в клинических исследованиях сыворотки крови, желудочного сока, мочи, спинно-мозговой жидкости. Электрофорез применяется в физиотерапии. Обычно применяются два основных метода - макроскопический и микроскопический электрофорез.

Макроскопический электрофорез используются для разделения веществ, находящихся в смеси, и их последующего выделения.

Микроскопический электрофорез используются для изучения подвижности ионов, клеток, частиц в электрическом поле, величины электрокинетического потенциала, а также электрохимических свойств поверхности исследуемых веществ.

Скорость передвижения частиц дисперсной фазы можно найти из уравнения Смолуховского: где υ - скорость передвижения частиц; ε- диэлектрическая проницаемость дисперсионной среды; Е – градиент потенциала электрического поля; ζ - электрокинетический потенциал; η -коэффициент вязкости дисперсионной среды.

Мы можем применить уравнение (1) для эритроцитов, лейкоцитов, микроорганизмов и других клеток. Электрофоретическая подвижность белковых молекул и коллоидных частиц зависит от их размера и формы. Коэффициент, зависящий от размера и формы частиц, вводится для расчетов в уравнение (1). Уравнение (1) применяется для вычисления величины электрокинетического потенциала. Для этого необходимо знать напряженность внешнего поля, диэлектрическую проницаемость и коэффициент вязкости среды, а также скорость движения дисперсной фазы. Один из методов электрофореза заключается в следующем. Исследуемую дисперсную систему помещают на дно V - образной трубки и наливают в боковые колена чистый буферный раствор. Между исследуемой жидкостью и буферным раствором должна быть отчетливая граница раздела. Электроды, соединенные с источником постоянного тока, погружаются в каждое колено V- образной трубки. Создаваемое электрическое поле вызывает перемещение дисперсной фазы исследуемого раствора, и граница между дисперсной системой и буферным раствором перемещается. Перемещение границы регистрируется с помощью длиннофокусной оптики. Если исследуемая смесь содержит несколько компонентов, то каждый компонент движется со скоростью, пропорциональной величине ξ потенциала. В результате смесь разделяется на ряд функций. При регистрации сигнала получается кривая, имеющая ряд пиков. Высота пиков служит количественным показателем данных функций. Затем выделяются и исследуются отдельные фракции белков кровяной плазмы. Данный метод распространился после разработки техники этого метода Тизелиусом.

На аппарате Тизелиуса можно получить результаты высокой точности, но это сложный и громоздкий прибор.

Метод электрофореза на бумаге менее точный, но более простой. Этот метод, предложенный Виландом и Фишером, применяется в настоящее время. Он позволяет разделять белки, нуклеиновые кислоты, стерины и другие биологически важные вещества. Определенное количество исследуемого раствора наносится на специальную фильтровальную бумагу, смоченную буферным раствором. Концы этой полоски бумаги соединяются через ванночки, заполненные буферным раствором. Электроды соединяются с источником постоянного тока и опускаются в ванночки с буферным раствором. Компоненты исследуемой смеси перемещаются при включении тока. Подвижность отдельных компонентов зависит от величины ξ потенциала, в соответствии с уравнением (1). После окончания опыта, исследуемые вещества располагаются на различном расстоянии от линии старта. Ленту бумаги необходимо высушить и окрасить красителем, проявляющим исследуемые вещества. В дальнейшем разделенные компоненты подвергаются количественному анализу. Для разделения и исследования электрохимических свойств коллоидных растворов применяются макроскопические методы электрофореза. Микроскопические методы электрофореза используются для изучения электрохимических свойств суспензий различных клеток: эритроцитов, лейкоцитов, бактерий, половых клеток. Суспензии клеток в небольшом количестве помещаются в специальную камеру, заполненную буферным раствором. В эту камеру вводятся также электроды, соединенные с источником постоянного тока. Под действием электрического поля клетки начинают двигаться к противоположно заряженному электроду. Скорость перемещения клеток определяется с помощью микроскопа, снабженного окулярным микрометром.

Важные данные, характеризующие электрохимические свойства биологических поверхностей, получены с помощью методов электрофореза. Живая протоплазматическая поверхность всегда заряжена отрицательно, все биологические поверхности обладают отрицательным электрокинетическим потенциалом. Это установлено на основе многочисленных экспериментов. Не известно ни одного примера положительного потенциала поверхности живого объекта.

Величина ξ- потенциала может иметь различные значения для разных клеток. У человека она составляет примерно 16,3 мВ. Потенциал эритроцитов очень стабильная величина. Например, нет различий в величине ξ- потенциала эритроцитов у людей различных рас и пола. Различий не наблюдаются также между представителями разных групп крови. Электрофоретическая подвижность эритроцитов не изменяется при ряде заболеваний крови, в том числе при многих формах анемий. Электрохимические свойства поверхности эритроцитов отличаются большой стойкостью и постоянством.

Ученые пришли к выводу, что электрокинетический потенциал эритроцитов обусловлен диссоциацией кислотных групп молекул фосфолипидов (кефалина) на поверхности эритроцитов и не связан с процессами адсорбции белков и ионов. Величина электрокинетического потенциала эритроцитов меняется в том случае, если происходит изменение физико-химического состава самой поверхности клетки. Это наблюдается при некоторых заболеваниях, например гемобластозах, лимфосаркоме. Для других форменных элементов крови ξ- потенциал изучен значительно слабее, чем для эритроцитов. Лейкоциты движутся к аноду при электрофорезе, как и эритроциты, но их подвижность примерно в 2 раза ниже подвижности эритроцитов. Электрофоретическая подвижность лейкоцитов весьма близка к подвижности кварцевых частиц. Явление электрофореза наблюдается при миграции лейкоцитов в воспалительные очаги. Электрокинетические явления могут способствовать миграции лейкоцитов. В воспаленных участках происходят процессы разрушения структур и накопления свободных молекул, главным образом органических кислот, что приводит к сдвигу pH в кислую сторону. В результате этих физико-химических изменений пограничный участок между воспаленной и невоспаленной тканью приобретает избыточный положительный потенциал величиной до 100-150 мВ. А так как лейкоциты обладают отрицательным электрокинетическим потенциалом, то они движутся через стенку капилляра в ткань по направлению к положительно заряженному воспаленному участку.

Бактериальные клетки обладают отрицательным ζ потенциалом, который может меняться в очень широких пределах: от нуля до десятков милливольт. Благодаря этим исследованиям большинство бактерий удалось разделить на две группы.

К первой группе принадлежат бактерии, поверхность которых имеет белковую природу. Диссоциация ионогенных групп белковых молекул обусловливает заряд и ζ- потенциал таких клеток. ζ - потенциал этих клеток меняется при изменении pH среды, так как степень диссоциации ионогенных групп зависит от pH.

Ко второй группе относятся бактерии, поверхность которых состоит из полисахаридов. Заряд клеток в данном случае обусловлен адсорбцией ионов из дисперсионной среды полисахаридами поверхности. Электрофоретическая подвижность таких клеток практически не зависит от pH среды. Однако такое деление оказывается довольно условным, т.к. свойства поверхности бактериальных клеток могут изменяться при изменении внешних условий существования. Так, например, ζ потенциал золотистого стафилококка при обычных условиях культивирования остается постоянным при большом изменении pH среды. Если же бактерии культивируются в среде, богатой глюкозой, то наблюдается зависимость ξ- потенциала от величины pH. Эта зависимость появляется вследствие накопления на поверхности клеток групп белковой природы. Таким образом, знание подвижности ионов, применение метода электрофореза является хорошим средством изучения электрохимических свойств биологических поверхностей: способности к ионизации и способности к адсорбции молекул и ионов.

Проводимость электролитов осуществляется за счет ионов, возникающих при растворении и расщеплении молекул веществ. Молекулы распадаются на положительно заряженные ионы - катионы и отрицательно заряженные ионы - анионы. Явление расщепления растворимого вещества на ионы называется электролитической диссоциацией.

Если два электрода погрузить в электролит и подвести к ним напряжение, то под действием электрического поля ионы с отрицательными зарядами (анионы) будут двигаться к аноду, а ионы с положительными зарядами (катионы)- к катоду. Если разность потенциалов на электродах, расположенных на расстоянии L друг от друга, равна φ12 , тогда напряженность электрического поля электролита определяется по формуле E= (φ12)/L

Электрическое поле действует на заряженные частицы с постоянной силой, заставляя их перемещаться к электродам с некоторой постоянной скоростью. Чем больше напряженность, тем быстрее будут перемещаться ионы. Скорость перемещения ионов прямо пропорциональна напряженности электрического поля, υ=υ0E, где υ0, - коэффициент пропорциональности, называемый подвижностью ионов: υ0 = υ/E

Напряженность электрического поля измеряется в В/м, скорость движения ионов - в м/с. Подвижность ионов определенного вида выражается их скоростью перемещения в растворителе под действием электрического поля и измеряется в

Подвижность различных ионов при одинаковых условиях перемещения зависит от размеров ионов и валентности. Подвижность является величиной характерной для определенного вида ионов. По величине подвижности ионов можно определить вид иона или разделить смесь ионов электролитическим путем.

 

1) Сердце.Биофизические свойства сердца(проводимость, возбудимость и т.д.)Сердце человека — полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на две половины: левую и правую. Вторая перегородка, идущая в горизонтальном направлении, образует в сердце четыре полости: верхние полости —предсердия, нижние — желудочки. Масса сердца новорожденных в среднем равна 20 г. Масса сердца взрослого человека составляет 0,425—0,570 кг. Длина сердца у взрослого человека достигает 12—15 см, поперечный размер 8—10 см, переднезадний 5—8 см. Масса и размеры сердца увеличиваются при некоторых заболеваниях (пороки сердца), а также у людей, длительное время занимающихся напряженным физическим трудом или спортом. Стенка сердца состоит из трех слоев: внутреннего, среднего и наружного. Внутренний слой представлен эндотелиальной оболочкой (эндокард), которая выстилает внутреннюю поверхность сердца. Средний слой (миокард) состоит из поперечно-полосатой мышцы. Мускулатура предсердий отделена от мускулатуры желудочков соединительнотканной перегородкой, которая состоит из плотных фиброзных волокон — фиброзное кольцо. Мышечный слой предсердий развит значительно слабее, чем мышечный слой желудочков, что связано с особенностями функций, которые выполняет каждый отдел сердца. Наружная поверхность сердца покрыта серозной оболочкой (эпикард), которая является внутренним листком околосердечной сумки—перикарда. Под серозной оболочкой расположены наиболее крупные коронарные артерии и вены, которые обеспечивают кровоснабжение тканей сердца, а также большое скопление нервных клеток и нервных волокон, иннервирующих сердце.Перикард (сердечная сорочка) окружает сердце как мешок и обеспечивает его свободное движение. Перикард ограничивает растяжение сердца наполняющей его кровью и является опорой для коронарных сосудов. В сердце различают два вида клапанов — атриовентрикулярные и полулунные. Атриовентрикулярные клапаны располагаются между предсердиями и соответствующими желудочками. Полулунные клапаны отделяют аорту от левого желудочка и легочный ствол от правого желудочка.В деятельности сердца можно выделить две фазы: систола (сокращение) и диастола (расслабление). Длительность различных фаз сердечного цикла зависит от частоты сердечных сокращений. При более частых сердечных сокращений деятельность каждой фазы уменьшается, особенно диастолы.Во время диастолы предсердий атриовентрикулярные клапаны открыты и кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается обратное движение крови в полые и легочные вены. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов, и кровь из желудочков поступает в соответствующие сосуды. Во время диастолы желудочков давление в них резко падает, что создает условия для обратного движения крови в сторону желудочков. Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца.Сердечная мышца обладает возбудимостью, способностью проводить возбуждение и сократимостью.Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8—1,0 м/с, по волокнам мышц желудочков— 0,8—0,9 м/с, по специальной ткани сердца—2,0—4,2 м/с.Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем—папиллярные мышцы и слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Физиологическими особенностями сердечной мышцы является удлиненный рефрактерный период и автоматия.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных