Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Обратимость химических реакций

понятие, с которым связано решение многих вопросов химии и физики, первостепенной важности. В настоящей статье будут рассмотрены: 1) Возникновение учения об О. и его значение. 2) Точное значение термина О., ее обозначение, характеристика явлений. 3) Теории О. 4) О. и законы химических превращений. 5) Метод исследования химических равновесий на основании условий О. 6) Теория гальванических элементов, как следствие учения об О.

 

1) Возникновение учения об О. и его значение. Начало учению об О. реакций положил Бертоллэ (см.) в конце прошлого столетия. Его идеи были развитием тех воззрений на причины физических явлений, которые введены в науку Ньютоном. Подобно Ньютону, Бертоллэ считал, что причину явлений химических следует искать в силах, подобных силе тяготения и действующих между малейшими частицами вещества. Возможность этим путем объяснять чисто физические явления была уже доказана изучением капиллярных явлений и формы, принимаемой жидкими телами при разных условиях. Бертоллэ, прежде всего, настаивает на отсутствии каких бы то ни было оснований различать силы, обуславливающие физические и химические явления, сцепление и сродство. Как явления химического соединения, так и явления сцепления должны быть отнесены к одной и той же причине, а законы, управляющие химическими явлениями, должны, в конце концов, принять форму законов механики. Необходимым следствием этих воззрений явилась идея химических равновесий, понятие о которых, как и самый термин, введены Бертоллэ. Акт химического действия находится в непрерывной зависимости от масс взаимодействующих тел и приводит всякий раз к определенному состоянию равновесия - таково основное положение Бертоллэ. Изменяя условия, нарушая равновесия, мы можем заставить реакцию идти в том или ином направлении. Все реакции, согласно Бертоллэ, должны быть обратимы, т. е. могут проникать в противоположных направлениях в зависимости от условий, подобно превращению жидкости в пар, или твердого тела в жидкость. Несмотря на многие важные следствия, выведенные из этих положений, идея об О. реакций не нашла тотчас широкого применения, в основном по двум причинам. Стремясь обобщить явления, Бертоллэ впал в ошибку, настаивая на непрерывности действия масс, не только в акте химического превращения, но и в его результате, т. е. составе химического соединения, который также, согласно Бертоллэ, должен непрерывно меняться в зависимости от условий образования соединения. От этого положения пришлось отказаться после знаменитого спора Бертоллэ с Прутом. Вторым тормозом развития учения об О. реакций была малочисленность известных случаев химических равновесий. Мало того, существовало убеждение, что обширный класс химических явлений, а именно химические превращения органических соединений вне организма, представляет явления абсолютно необратимые. Полагали, что эти сложные соединения могут быть только разлагаемы, что химику доступен только их анализ, обратная же реакция - синтез - осуществима только в условиях живого организма. Это положение было с очевидностью опровергнуто синтезом мочевины, выполненным Велером в 1828 г. Центр тяжести химических работ сосредоточился с тех пор на синтезе органических соединений и, если в отношении некоторых наиболее сложных соединений, каковы, например, белковые, цель еще не достигнута, то все же область синтеза включает уже огромное число сложных органических соединений и окончательное решение вопроса можно считать лишь вопросом времени. Вместе с тем, удается наблюдать все чаще и чаще не только обращаемость реакций, но и случаи настоящей О., т. е. химические равновесия в самых разнообразных видах химического превращения. Таким образом, подготовлена почва для возрождения идей Бертоллэ, и эти идеи в новой форме и на новых началах служат теперь основанием теории химического сродства на механических началах, основанием "химической механики".

 

2) Точное значение термина О. реакций, ее обозначение, характеристика явлений. Обратимые реакции - частный случай "обратимого процесса". Под этим разумеют превращения, которые могут быть воспроизведены в обратном порядке при тожественных условиях, или, точнее, при условиях бесконечно мало отличных. Изменение объема газа под влиянием перемен внешнего давления - простейший случай обратимого процесса. Переход от объема V к объему V' может быть совершен и обратно здесь через непрерывный ряд состояний равновесия. Обратимый процесс - переход от одного состояния системы к другому через непрерывный ряд состояний равновесия. Но так как переход от одного состояния равновесия системы к другому требует нарушения равновесия, а при бесконечно малом нарушении равновесия переход должен совершаться бесконечно долго, то, следовательно, строго обратимый процесс неосуществим. Эта не реальная, а лишь мыслимая, идеальная форма явления, впервые указанная Сади Карно (см. Карно), служит одним из оснований термодинамики и является весьма важным орудием для отыскания зависимости между факторами, управляющими состоянием подвижного равновесия (параметрами). Всякий раз, когда между двумя состояниями системы имеет место непрерывный ряд состояний равновесия, переход от одного состояния к другому может быть рассматриваем, как обратимый процесс, и он может, быть выражен формулами термодинамики независимо от воззрений на природу сил или причин, превращение вызывающих. Перемена физического состояния тела, испарение и сжижение, плавление и замерзание - образчики превращений, могущих совершаться обратимым путем и приписываемых действию частичных сил. Вода, находясь при данной температуре в каком-либо сосуде, испаряется до тех пор, пока упругость пара не достигнет известной величины. Наступает равновесие, которое определяется величиной внешнего давления. Если стенки сосуда уступают давлению пара (как, например, если сосуд представляет цилиндр с подвижным поршнем), происходит испарение, - ежели давление стенки превышает давление пара, происходит сжижение, а при равенстве давлений, внешнего и давления пара, наступает всякий раз равновесие. Такой же характер представляют явления растворения или выделения тела из раствора. И здесь мы наблюдаем явления равновесия, которые выражаются в определенном "коэффициенте растворимости", непрерывно меняющемся при непрерывном изменении условий этого равновесия. В данном случае действующей причиной предполагаются также частичные силы, хотя часто растворение явно сопровождается актом химического соединения. С другой стороны и при сжижении появляется в некоторых случаях явная необходимость признать соединение частиц, как, например, для уксусной кислоты. Очевидное доказательство невозможности провести границу между так называемыми физическими превращениями и химическими, представил Сен-Клер Девилль, открыв случаи равновесий между явлениями несомненного химического соединения и разложения, названные им явлением диссоциации (см.). Им же и его последователями установлена полная аналогия диссоциации с испарением. Случаи химических равновесий при двойных разложениях были предметом исследования еще Бертоллэ. Полную картину явлений равновесия для этого вида реакций дал Бертело исследованием образования сложных эфиров. Наконец, изучены равновесия и в случаях аллотропических и изомерных превращений, как, например превращение желтого фосфора в красный и обратно, превращение друг в друга двух кристаллических разностей серы, октаэдрической и призматической. Выяснение условий О. привело, наконец, и к превращению угля в алмаз, осуществленное недавно Муассаном, тогда как давно было известно лишь обратное превращение алмаза в уголь. Таким образом доказано, что все виды химического превращения: соединение, разложение, двойные разложения, аллотропические и изомерные превращения - могут вести к состояниям химического равновесия, могут удовлетворять требованиям О. Такие превращения могут совершаться при известных условиях в одном из двух противоположных направлениях и до конца, или же останавливаться на некотором пределе реакции, обозначающем ту часть массы данного вещества, которая подверглась превращению при данных условиях. Чтобы отличить такие состояния химических систем Вант Гофф предложил особый знак, как обозначение О. реакции: ↔. Если при данных условиях тело или система тел, изменяясь, приходит к состоянию равновесия, то для обозначения его, оба противоположные состояния системы соединяются знаком Вант Гоффа, показывающим, что из какого конца ни исходить - в результате получится состояние равновесия при участии обеих противоположных состояний систем, в отличие от обычного знака равенства, которым обозначают полное превращение состояния системы, обозначенного по левую сторону знака равенства, в состояние, обозначенное по правую сторону знака. Так, мы имеем: С + S 2 ↔ CS2.

 

Уголь и сера, нагретые до темно-красного каления, образуют сернистый углерод CS 2, который при той же температуре разлагается на уголь и серу, и потому из какого бы состояния системы мы ни исходили, мы приходим к одному и тому же состоянию равновесия, причем система будет заключать все три тела.

 

Или: С 2H6 О (спирт) + С 2H4 О 3 (кислота) ↔ C 4H8O2 (эфир) + Н 2 О (вода).

 

Случай равновесия, изученный Бертело. Здесь система в состоянии равновесия будет заключать четыре тела, будем ли мы исходить из смеси спирта и кислоты или эфира и воды.

 

3) Теории О. Две точки зрения служат основанием теории О. реакций, и сообразно этому две теории: теория термодинамическая и теория кинетическая. По термодинамической теории обратимые реакции рассматриваются как частные случаи обратимого процесса и трактуются на основании общих законов термодинамики. Этот прием привел к блестящим результатам. Получен ряд выводов общего характера, вполне согласных с действительностью и уясняющих некоторые, до того загадочные стороны химических явлений; сверх того для некоторых упрощенных условий реакции удается установить и численные соотношения между факторами, управляющими химическим равновесием. Применение формул термодинамики к решению различных задач О. реакций в значительной мере упрощено В. Гоффом введением особого приема "полупроницаемой стенки" (см. Осмос), дающего возможность изменять отношение действующих масс в растворах, путем, весьма близким к сжиманию или разрежению газа. Термодинамическая теория не рассматривает вопроса о первоначальных причинах (силах), обуславливающих факт О. Эта теория берет равновесие готовым и отыскивает общие законы, им управляющие, независимо от предполагаемых различий в природе явлений, или от качества тел, при одном лишь условии, чтобы процесс обладал свойством О. Кинетическая теория О. реакций основывает свои выводы на наблюдениях "скорости" химических реакций и на определенной гипотезе о причине, обуславливающей самый факт наступления химического равновесия. Скоростью реакции называют количество вещества, подвергшегося данному превращению в единицу времени. По кинетической теории - всякая реакция, приводящая к состоянию химического равновесия, совершается всегда так, что одновременно при одних и тех же условиях протекают обе противоположные реакции. В каждый данный момент наблюдаемая скорость реакции является разностью скоростей двух противоположных реакций. Например в системе CS 2, S и C при температуре темно-красного каления, одновременно происходит и разложение CS 2, и соединение C с S, и наблюдаемая скорость разложения с = а-b, где а действительная скорость разложения CS 2 при данных условиях, b -скорость соединения C с S; если, например, с > b, то наблюдается разложение, количество CS 2 в смеси уменьшается. Но так как по мере уменьшения количества CS 2 в смеси и скорость его разложения а неизбежно уменьшается, а скорость противоположной реакции b возрастает вследствие увеличения массы S и C, то необходимо должен наступить момент, когда наблюдаемая скорость разложения сделается равной нулю, т. е. c = a - b = 0, и система будет находиться в состоянии химического равновесия, превращение достигает предела. По кинетической meopиu химические равновесия представляют образчики лишь кажущегося химического покоя, в действительности же наступающий в этих случаях предел реакции есть следствие равенства скоростей двух одновременно совершающихся противоположных превращений. Такой взгляд на причину О., высказанный впервые по отношению к испарению Клаузиусом, по отношению к химическим реакциям - Вильямсоном, получил широкое распространение. Необходимость его усматривалась также (Пфаундлер) в том положении кинетической теории газов, по которому в массе газа при данной температуре имеет место некоторая определенная средняя скорость движения частиц, причем постоянно являются уклонения от этой средней величины в обе стороны. Не все, следовательно, частицы находятся в одинаковых условиях движения и потому при одной и той же температуре одни частицы могут разлагаться, а другие - соединяться. Этим же путем объясняется и скорость химических реакций, т. е. тот факт, что и в однородной среде частицы вещества при данной температуре испытывают превращение последовательно, а не одновременно. Обе указанные теории О. реакций и поныне разрабатываются параллельно. Состязание между ними сводится к состязанию двух философских школ, различно трактующих физические явления - Ньютонианской и Картезианской. Должно признать, что кинетическая теория О. реакций в своих выводах значительно отстала от термодинамической. На ее стороне - наглядность и простота вывода изменяемости предела в зависимости от массы (закон химической массы) в однородной среде. Тот же закон выводится и на основании законов термодинамики. Но по отношению к равновесиям в неоднородной среде кинетическая теория находится в противоречии с действительностью. Кинетическая теория не указывает также связи между тепловым эффектом реакции и изменяемостью предела. Ее преимущество - непосредственная связь между скоростью реакции и пределом - лишь кажущееся: величины скоростей, находимые в двух противоположных реакциях отдельно, не имеют ничего общего с теми, которые надо было бы принять в условиях наступившего равновесия. Так, соединение дихлоруксусной кислоты и амилена ограничено пределом, при известных условиях близким к половине; на этом основании надо было бы ожидать, что скорость разложения дихлоруксусного амина в отдельности близка к скорости его образования, на самом же деле чистый дихлоруксусный амил не обнаруживает заметного разложения при тех условиях, при которых соединение совершается легко.

 

Обратимые реакции. — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например:
3H2 + N2 ⇌ 2NH3.

Направление обратимых реакций зависит от концентраций веществ — участников реакции. Так в приведённой реакции, при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении химического равновесия, система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет большую скорость. Например, простая реакция
N2O4 ⇌ 2NO2

складывается из элементарных реакций
N2O4 ⇌ 2NO2 и 2NO2 ⇌ N2O4.

Для обратимости сложной (многостадийной) реакции, например уже упоминавшейся реакции синтеза аммиака, необходимо, чтобы были обратимы все составляющие её стадии..
----------------------------------------------------------------------------------------------------------------------
Химическое равновесие.— состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

А2 + В2 ⇄ 2AB.
-------------------------------------------------
Смещение химического равновесия.
Основная статья: Принцип Ле Шателье — Брауна

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье.

Факторы влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции.

CaCO3=CaO+CO2 -Q t↑ →, t↓ ←

N2+3H2↔2NH3 +Q t↑ ←, t↓ →

2) давление

При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т. е. если в реакции участвуют твердые вещества, то они в расчет не берутся.

CaCO3=CaO+CO2 P↑ ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ.

S2+2O2=2SO2,[O]↑ →, [SO2]↑ ←

Катализаторы не влияют на смещение химического равновесия!

 

 

Театра вы знаете, что реакция может идти при благоприятном соотношении энергетического и энтропийного факторов. Ноесли эти факторы уравновешивают друг друга, состояние системы не меняется. В таких случаях говорят, что системи находится в равновесии.Химические реакции, протекающие в одном направлении, называют необритимыми.

Большинство химических реакций являются обритимыми. Эта значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).Taк как со временем концентрации веществ уменьшается, то и скорость прямой реакции тоже уменьшается.Рано или поздно будет достигнуто состояние, при котором скорости прямой и обдотной реакций станут равными V-> = <-V.

Состояние системы, при котором скорость прямой реакции равна скорости обратной рекции, называют химическим равновесием.

При этом концентрации реагирующих веществ и продуктов реакции остаются без изменения. Их называют равновесными концентрациями. На макроуровне кажется, что в целом ничего не изменяется. Но на самом же деле в прямой, и обратный процесс продолжают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным или динамическим.

Разницу в изменении концентраций веществ и скорости реакции в случае необратимой и обратимой реакций вы можете увидеть на рисунке 34.Конгтакты равновесия рассчитывают из опытных данных, определяя равновесные концентрации исходных веществ и продуктов реакции при определенной температуре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. В случае гетерогенных реакций в выражение константы равновесия входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе.

Рассмотрим разные способы смещения равновесия на примере реакции взаимодействия азота и водорода с образованием аммиака:

Влияние изменения концентрации веществ При добавлении в реакционную смесь азота N2 и водорода H2 увеличивается концентрация газов, а значит, увеличивается скорость прямой реакции. Равновесие смещается вправо, в сторону продукта реакции, то есть в сторону аммиака.

Таким образом в реакционной смеси увеличится количество продукта реакции. Увеличение же концентрации продукта реакции аммика, приведет к смещению равновесия влево, в сторону образования исходных веществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ находится в газообразном состоянии. При увеличении давления уменьшается объем газон, а значит, увеличивается их концентрация.

Предположим, что давление в замкнутой системе повысили, это значит, что концентрации всех газообразных веществ в рассматриваемой нами реакции возрастут в 2 раза.

Изменение давления практически не сказывается на объеме жидких и твердых веществ, то есть не изменяет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления.

Влияние изменения температуры При повышении температуры, как вы знаете, скорости всех реакций (экзо и эндотермических) увеличиваются. Причем повышение температуры больше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических.

Таким образом, скорость обратной реакции (в нашем примере эндотермической) увеличится сильнее, чем скорость прямой. Равновесие сместится в сторону процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье (1884 г.):

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смешается в ту сторону, которая ослабляет данное воздействие.

Сделаем выводы: • при увеличении концентрации реагирующих веществ химическое равновесие системы смещается в сторону образования продуктов реакции;

• при увеличении концентрации продуктов реакции химическое равновесие системы смещается в сторону образования исходных веществ;

• при увеличении давления химическое равновесие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;

•при повышении температуры химическое равновесие системы смещается в сторону эндотермической реакции

• при понижении температуры — в сторону экзотермического процесса.

КАТАЛИЗ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.

Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.

Каталитические реакции - реакции, протекающие в присутствии катализаторов.

 

Положительным называют катализ, при котором скоость реакции возрастает, отрицательным (ингибированием) - при котором она убывает. Примером положительного катализа может служить процесс окисления аммиака на платине при получении азотной кислоты. Примером отрицательного - снижение скорости коррозии при введении в жидкость, в которой эксплуатируется металл, нитрита натрия, хромата и дихромата калия.

Катализаторы, замедляющие химическую реакцию, называются ингибиторами.

В зависимости от того, находится катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе.

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

Н О + I = H O + IO

Н O + IO = Н O + O + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель. Механизм гетерогенного катализа сложнее, чем у гомогенного.

Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1. Диффузия реагирующих веществ к поверхности твердого вещества.

2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их.

3. Химическая реакция между реагирующими молекулами.

4. Десорбция продуктов с поверхности катализатора.

5. Диффузия продукта с поверхности катализатора в общий поток.

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Промоторы (или активаторы) - вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю катализатором V O активности (контактный метод производства H2 SO4).

Многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.

Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами - ферментами.

Скорость процесса - чрезвычайно важный фактор, определяющий производительность оборудования химических производств. Поэтому одна из основных задач, поставленных перед химией научно-технической революцией, это поиск путей увеличения скорости реакций. Другая важ- ная задача современной химии, обусловленная резко возрастающими масштабами производства химических продуктов,- повышение избирательности химических превращений в полезные продукты, уменьшение количества выбросов и отходов. С этим связана, кроме того, и охрана окружающей среды и более рациональное использование истощающихся, к сожалению, природных ресурсов.

Для достижения всех этих целей нужны верные средства, и такими средствами служат прежде всего катализаторы. Однако изыскивать их не так просто. B процессе познания внутреннего устройства окружающих нас вещей ученые установили определенную градацию, иерархию уровней микромира. Мир, описываемый в нашей книге,- это мир молекул, взаимные превращения которых составляют предмет химии. Нас будет интересовать не вся химия, а только часть ее, посвященная изучению динамики изменения химической структуры молекул. Видимо нет надобности говорить о том, что молекулы построены из атомов, а последние- из ядра и окружающей его электронной оболочки; что свойства молекул зависят от природы составляющих их атомов и последовательности соединения их друг с другому что химические и физические свойства веществ зависят от свойств молекул и характера их взаимосвязи. Будем считать, что все это в общих чертах известно читателю, и потому главный упор сделаем на вопросах, связанных с представлением о скорости химических реакций.

Взаимные превращения молекул протекают с самой различной скоростью. Скорость можно изменять, нагревая или охлаждая смесь реагирующих молекул. При нагревании скорость реакции, как правило, возрастает, но это не единственное средство ускорения химических превращений. Существует еще один, более эффективный способ - каталитический, широко используемый в наше время в производстве самых разнообразных продуктов.

Первые научные представления о катализе возникли одновременно с развитием атомной теории строения вещества. В 1806 г., через год после того, как один из создателей современной атомистической теории Дальтон сформулировал в «Записках Манчестерского литературного и философского общества» закон кратных отношений, Клеман и Дезорм опубликовали подробные данные об ускорении процесса окисления сернистого газа в присутствии окислов азота при камерном производстве серной кислоты. Шесть лет спустя в «Технологическом журнале» Кирхгоф изложил результаты своих наблюдений об ускоряющем действии разбавленных минеральных кислот на гидролиз крахмала до глюкозы. Этими двумя наблюдениями была открыта эпоха экспериментального изуче- ния необычных для того времени химических явлений, которым шведский химик Берцелиус дал в 1835 г. общее название «катализ» от греческого слова «каталоо» - разрушать. Такова, в двух словах, история открытия ка- тализа, который с полным основанием следует отнести к одному из фундаментальных явлений природы.

 

 

отличии от необратимых химических реакций, обратимые химические реакции протекает до конца, т.е. не всегда исходные вещества полностью превращаются в продукты реакции. Причиной такого явления служат условия для протекания реакции в противоположном направлении. Например,

 

H2 + I2 = 2 HI (k1, T=200°C),

 

А при нагревании HI до 180°С, кислота начинает разлагаться на водород и йод, и константа скорости будет иной:

 

2HI = H2 + I2 (k2, Т=180°С),

 

Т.е. в данных условиях не произойдет ни полного разложения HI (т.к. продукты могут вновь реагировать друг с другом), ни полного образования HI.

Химические реакции, которые при одних и тех же условиях могут идти в противоположных направлениях, называются обратимыми.

При написании уравнений обратимой реакции вместо знака «=» ставят знак обратимости - две противоположные стрелки – «». Реакцию, протекающую слева направо, называют прямой (константа скорости k1), а реакцию, протекающую справа налево, - обратной (константа скорости k2).

В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а по ходу реакции уменьшаются концентрации исходных веществ.

Обратная реакция в начальный момент времени имеет минимальную скорость, которая увеличивается по мере нарастания концентрации продуктов реакции.

Наконец наступает такой момент, когда скорости прямой и обратной реакции уравниваются, и такое состояние называется химическим равновесием.

 

“В мире катализа”., М, Наука, 1977

“Большая химическая энциклопедия”, т.2, М., Советская энциклопедия,1990

“Справочник школьника по химии”,М., Слово, 1995

«Общая химия», Москва, 1982

“Химия 11”,М.,Просвещение,1992

“Органическая химия”.,Прсвещение,1991

“Общая Химия”,Минск,Университетское,1995

«Химия в действии», тт. 1 – 2, Москва, 1997

«Химия в таблицах», Москва, 1995

 

<== предыдущая лекция | следующая лекция ==>
Митрошенков, В. А. Земля под небом. Хроника жизни Юрия Гагарина. | Происхождение денег, их эволюция. Деньги — экономическая и историческая категория. Развитие форм стоимости


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных