Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






2 страница




Ток, протекающий в любом проводнике, вызывает его нагрев. Собственно, это и есть основное воздействие тока на проводящую среду. Двигаясь между узлами кристаллической решетки, электроны беспрестанно испытывают столкновения.

Из-за этого амплитуда тепловых колебаний атомов металла увеличивается, а скорость движения электронов и величина электрического тока не такая большая, как это могло бы быть теоретически.

Электроны «толкают» атомы – атомы колеблются сильнее. Раз увеличивается интенсивность колебаний, то столкновения происходят еще. Это приводит к еще большему нагреву. Интенсивность и частота столкновений электронов с атомами определяет электрическое сопротивление проводника, а следовательно, и величину тепловых потерь.

Можно предположить, что тепловые потери – явление однозначно отрицательное. Выделяемое тепло снижает коэффициент полезного действия сети, может повредить провода и изоляцию, вызвать возгорание и пожар.

Но на самом деле «электрическое тепло» может быть и очень полезным. Так, в традиционной электрической лампе накаливания именно перегрев спиральной нити вызывает свечение. Поэтому нить выбирается настолько тонкого сечения, чтобы оказывать достаточное сопротивление току, греться, но не перегорать.

При этом, правда, используются и некоторые технологические хитрости, такие как, например, специальный материал нити – тугоплавкий вольфрам, но сути дела это не меняет.

Условно полезным можно считать и выделение тепла при прохождении тока через проводник предохранителя или плавкой ставки. Если бы не это тепло – вставка или предохранитель не могли бы сработать и защитить цепь.

И, уж конечно, никому не нужно долго объяснять, насколько полезным является тепло, выделяемое проводниками в нагревательных элементах электрических плит и электрообогревателей.

Итак, очевидно, что тепловые потери во многих случаях можно было бы назвать и «тепловыми приобретениями». Есть и физический закон, позволяющий теоретически обосновать и рассчитать, на какие же именно «приобретения» мы можем рассчитывать в данной конкретной сети.

Закон этот открыли и исследовали независимо друг от друга два ученых в конце XIX века – Джеймс Джоуль и Эмиль Ленц. Они выяснили, что мощность тепловых потерь в проводнике прямо пропорциональна напряженности электрического поля и плотности электрического тока:

w=j*E

Здесь можно вспомнить закон Ома в дифференциальной форме и записать:

w=σ*E2

Это дифференциальная форма записи закона Джоуля-Ленца для тепловых потерь. Интереснее, конечно, интегральная форма, позволяющая рассчитать точное количество тепла, выделяемого проводником с током. После интегрирования по времени получаем закон Джоуля-Ленца в такой форме:

Q=I²*R*t

То есть, тепла выделится тем больше, чем больше в цепи электрический ток и выше сопротивление проводника. Ну и, разумеется, имеет значение время, в течение которого в этом проводнике протекает ток.

Очень важно то, что зависимость количества теплоты от тока – квадратичная, а от других параметров – прямо пропорциональная. Это означает, что даже при небольшом увеличении тока в цепи нагрев проводников существенно возрастает.

Изменение электрического сопротивления в большую сторону такого эффекта не дает, потому что при этом снижается электрический ток. Именно поэтому мгновенный перегрев проводов возникает при коротком замыкании и стремительном снижении сопротивления, а не при обрыве и устремлении сопротивления к бесконечности.

Дифференциал түріндегі Джоуль Ленц заңы

Еркін жолының соныңда электрон жылдамдықпен қозғалып, кинетикалық энергияға ие болады, соқтығысқан кезде энергиясын толығымен кристалдық торға береді. Бұл энергия мметалдың ішкі энергиясың арттырып, метал қызып жылу шығарады.

Бірлік көлемде өткізгіштін электроны болсын, әр электрон бір секунд ішінде орта есеппен жиілікпен соқтығысады. Сондықтан бірлік көлемде бір секунд ішінде бөлініп шығатын жылу

.

Кедергі арқылы жазсақ

.

3. Дифференциал түрдегі Ом және Джоуль-Ленц заңдары. Интеграл түрдегі Ом заңы.1827 жылы неміс ғалымы Ом көптеген тәжірибелердің нәтижесінде мынадай қорытынды шығарды: тұрақты температурада өткізгіш ұштарындағы кернеудің ток шамасына қатынасы әр уақытта тұрақты болады: I=U/R, мұндағы R- өткізгіштің кедергісі деп аталады. Өткізгіш кедергісі оның пішініне және мөлшеріне, сол сияқты табиғаты мен температурасына тәуелді, өлшем бірлігі-Ом. Бір текті цилиндр тәрізді өткізгіштердің кедергісі оның ұзындығына тура пропорционал да, көлденең қимасына кері пропорционал болады: R=r(l/S) (10.11), мұндағы пропорционалдық коэффициент r-өткізгіштің меншікті кедергісі, ол өткізгіштің қандай заттан жасалғанын көрсетеді, өлшем бірлігі-Ом*м, r=1/g (10.12), осы өрнектегі g-өткізгіштің меншікті өткізгіштігі, өлшем бірлігі-сименс/метр. Осы айтылғандар бойынша Ом заңын жазатын болсақ, бір текті металл өткізгіш арқылы өтетін ток күші өткізгіштегі кернеудің түсуіне тура пропорционал кедергіге кері пропорционал I=U/R немесе I=(φ1–φ2)/R (10.13). Осы теңдік-тізбектің бөлігі үшін жалпы түрдегі Ом заңы, немесе тізбектің бір текті емес бөлігі үшін Ом заңы деп аталады. Егер тізбек тұйықталған болса, онда ток көзінің э.қ.к.-і ішкі бөлігіндегі кернеу мен сыртқы кернеудің қосындысына тең: e=Ir+U. Тізбек бөлігі үшін Ом заңын ескеріп, тізбектегі ток күшін тапсақ:

I=e/(R+r) (10.14)

Осы формула тұйық тізбек үшін Ом заңы деп аталады.

Токтың тығыздығы j=I/Sекенін ескерсек және g=1/r меншікті электр өтімділігі десек, онда соңғы өрнек мына түрде жазылады: j=gЕ(10.15)

Осы формула ток тығыздығы үшін Ом заңының дифференциалдық түрі деп аталады.

Көптеген тәжірибелер металдар кедергісі температураға тура пропорцио -

нал болатынын, яғни температура артқан сайын кедергі артатындығын көрсетті: Rt=R0(1+at0) (10.16)

Кернеуі U болатын өткізгіштің бөлігі арқылы ток өткенде, өткізгіш қызып, бойынан жылу бөлініп шығады. Осы жылудың бөлініп шығуы зарядтарды тасымалдаушы электр күштерінің жұмысына байланысты: A=qU. Тұрақты ток үшін жазсақ, A=IUt (10.17)

Токтың қуаты келесі өрнекпен есептеледі: N=dA/dt=(IUdt)/dt=IU (10.18)

Егер ток қозғалмайтын металл өткізгіш арқылы жүрсе, онда біршама жылу бөлініп шығады, осы кезде ток жұмысы энергияның сақталу заңына байланысты жылуға айналады: dA=dQ. (9.19). Сөйтіп, бұл жылу мөлшерін (10.17) және (10.13) өрнектерінің мәндерін еске ала отырып былайша жазамыз: Q=IUt=I2Rt (10.20).

Осы өрнек Джоуль-Ленц заңы деп аталады да былай оқылады: өткізгіштен бөлініп шығатын жылу мөлшері уақытқа, өткізгіштің кедергісіне және ток күшінің екі дәрежесіне пропорционал болады. Енді Джоуль-Ленц заңының дифференциалдық түрін жазатын болсақ, w=gE2 (10.21), бұл өрнек тұрақты және айнымалы токтар үшін орындала береді.

Есеп.

1,6 мм2 өткізгіш қимасынан 3 с ішінде 2.1019 электрон жүріп өтеді. Ток тығыздығын табыңыз (е=1,6.10-19 Кл).

4. Электронның жылдамдығы V=8 Мм/с болу үшін, қандай потенциал айырымы болуға тиіс? (mе=9,1.10-31 кг, е=1,6.10-19 Дж)

 

№ 8 ЕМТИХАН БИЛЕТІ

1. Механикалық жүйе. Сыртқы және ішкі күштер. Ньютон-ның үшінші заңы. Денелердің тұйық жүйесі. Импульстің сақталу заңы.

Біртұтас ретінде қарастырылатын материялық нүктелер (денелер) жиынын механикалық жүйе дейді.

Қарастырылып отырған механикалық жүйеге кірмейтін денелерді сыртқы денелер дейді. Жүйеге сыртқы денелер тарапынан әсер ететін күштер сыртқы күштер деп аталады. Ал ішкі күштер дегеніміз қарастырылып отырған жүйеге кіретін бөлшектердің өзара әсерлесу күштері.

Механикалық жүйе сыртқы депнелермен өзара әсерлеспесе (немесе оған сыртқы күштер әсер етпесе), онда ол тұйықталған немесе оқшауланған жүйе деп аталады

Материялық нүктелердің (денелердің) бір –біріне әсері өзара әсерлесу сипатта болады.

Ньютонның үшінші заңы: Материялық нүктелердің бір-біріне әсер ету күштері модулі бойынша әрқашан тең, бағыты жағынан қарама-қарсы және осы нүктелерді қосатын түзу бойымен әсер етеді: Ғ1,2 = - F2,1.

Бұл күштер әр материялық нүктеге түсірілгені, әрқашан жұбымен әсерлеседі және табиғаты бір болып табылады. Ньютонның үшінші заңы жеке материялық нүктелер динамикасынан кезкелген материялық нүктелер жүйесі динамикасына өтуге мүмкіндік береді, үйткені кезкелген өзара әсерлесуді материялық нүктелердің жұпталып өзара әсерлесуі ретінде қарастыруға болады.

Импульстің сақталу заңы - кеңістіктің біртектілігін көрсететін табиғаттың жалпы заңы. Кеңістіктің біртектілігі дегенімізкеңістіктің барлық нүктелерінде оның қасиеттерінің бірдей болуы.

Импульстің сақталу заңы тұйықталған жүйелерде орындалады. Егер жүйе сыртқы күш өрісінде болса, онда ол үшін кеңістіктің әртүрлі аймақтары эквивалентті болмайды.

Материялық нүктелердің (денелердің) тұйықталған жүйесінің толық импульсі уақыт бойынша өзгермейді .

2. Электр заряды және оның қасиеттері. Электр зарядының сақталу заңы. Электр зарядтарының өзара әсерлесуі. Электр өрісі. Электр өрісінің кернеулігі.

Электр заряды және оның қасиеттері. Электр зарядының сақталу заңы. Электр зарядтарының өзара әсерлесуі. Электр өрісі.

Электрдинамиканың негізі электр заряды мен электр өрісі болып табылады. Яғни кез келген зарядталған дененің айналасында электр өрісі болады. Зарядталған денелер немесе бөлшектер бір-бірімен осы өріс арқылы әсерлеседі. Электр заряды денелердің электрлік әсерлесуін сипаттайды. Электр зарядтарының қасиеттері:

- электр зарядтары оң және теріс болады, аттас зарядтар бір-бірінен тебіледі, ал әр аттас зарядтар бір-біріне тартылады;

- электр заряды релятивтік - инвариантты: ол қозғалыс кезінде мәнін

өзгертпейді, яғни оның шамасы санақ жүйесіне тәуелсіз;

- электр заряды аддитивті, яғни кез-келген жүйенің заряды жүйені

құрайтын бөлшектердің зарядтарының алгебралық қосындысына тең;

- электр заряды дискретті, яғни кез келген бөлшек е элементар зарядтан тұрады, яғни: q= eN.

Элементар заряды бар бөлшектер электрон (теріс) және протон (оң),

Элементар заряд / е/ = 1,6 10-19 Кл.

Электр зарядының сақталу заңы - тұйықталған жүйенің электр заряды осы жүйеде өтетін кез келген процесс кезінде өзгермейді. q1 + q2 + q3+ ….+ qn = const

Нүктелік заряд деген өлшемі мен пішінін ескермеуге болатын электр заряды бар дене.

Электр өрісі кез келген заряд өзінің айналасындағы кеңістікте электр өрісін туғызады. Зарядтардаң арасындағы өзара әсері осы электр өрісі арқылы жүзеге асады. Зарядтардың арақышықтығы артқан сайын электр өрісі азаяды. Электр өрісінің негізгі қасиеті оның бір нүктесіне орналақан зарядқа бір күшпен әсер етуі. Зарядтардың өзара әсерлесуі Кулон заңымен сипатталады. Ол екі нүктелік зарядталған дененің вакуумдегі өзара әсерлесу күшінің осы денелердің және зарядтарына және олардың ара қашықтығына тәуелділігін тағайындайды. Халықаралық бірліктер жүйесінде заң былай жазылады: , мұндағы = 8,85*10-12Кл2/Н*м2 - электр тұрақтысы.

Электрстатикалық өрістің күштік сипаттамасы өрістің кернеулігі болып табылады, ол бірлік оң зарядқа әсер ететін күшпен анықталады: ,

3. Есеп. Карно циклін жасайтын газ, суытқышқа Q2=14 кДж жылу береді. Цикл кезінде А=6 кДж. жұмыс істейді. Суытқыштың темпратурасын Т2=280 К деп альп, Т1 қыздырғыштың температурасын анықтаңыз

4. Индукциясы 0,01 Тл магнит өрісінде протон радиусы 140 см шеңбер бойымен қозғалады. Протонның жылдамдығын тап.

 

№ 9 ЕМТИХАН БИЛЕТІ

1. Айналу осіне қатысты дененің импульс моменті. Импульс моментінің сақталу заңы. Мысалдар.

Айналмалы қозғалыс динамикасының негізгі заңын қорытқан кезде, біз қатты денені материялық нүктелер жиынтығы деп қарастырып, мынадай қорытындыға келдік

, (5.2)

 

мұндағы –жүйенің импульс моменті;

– жүйеге әсер ететін сыртқы күштердің қорытқы моменті.

Ішкі күштердің моменттерінің қосындысы кез келген жүйе үшін нөлге тең.

Егер сыртқы күштер болмаса (тұйықталған жүйеде), онда , сондықтан, .

(5.3)

Тұйықталған жүйенің материялық нүктелерінің (денелер) толық импульс моменті тұрақты болып қалады.

Егер дене қозғалмайтын осьті айналып қозғалса ,, онда . екенін ескерсек,

. (5.4)

Импульс моментінің сақталу заңы да импульстің сақталу заңы сияқты табиғаттың негізгі заңы болып табылады. Оның негізінде кеңістіктің изотроптылығы қасиеті жатыр, яғни тұйық жүйенің бұрылуы оның механикалық қасиеттеріне әсер етпейді.

Егер дененің инерция моменті өзгермесе (абсолют қатты денелер үшін орынды), онда (3.32) теңдеуден бұрыштық жылдамдықтың тұрақтылығы шығады. Егер дене абсолют қатты болмаса немесе ол ішкі күштердің әсерінен бір – біріне қатысты орын ауыстыру мүмкіншілігі бар жеке бөліктерінен тұрса, онда дененің инерция моментінің өзгереді және бұрыштық жылдамдық тұрақты болмайды. (3.32) өрнек дененің инерция моментінің бірнеше есе кемуі оның бұрыштық жылдамдығының сонша есе артуын көрсетеді. Бұл заңдылықты, тік ось айналасында еркін айналатын Жуковский орындығы көмегімен көрсетуге болады. Қолында гирлері бар адам, қолдары созылған күйінде орындықпен бірге белгілі бір жылдамдықпен айналады. Адам мен орындықтың инерция моменті J1–ге тең болсын. Адам гирлерді айналу осіне жақындатқанда, инерция моменті J2 -ге дейін азаяды. Бұл бұрыштық жылдамдықтың ω2>ω1 -гедейін артуына алып келеді, импульс моментінің сақталу заңына сәйкес:

J1ω1=J2ω2

2. Термодинамиканың бірінші бастамасы және оны идеал газдың изопроцестеріне қолдану.

Термодинамиканың параметрлері деп физикалық күйін сипаттайтын физикалық шамаларды айтады.

Жүйенің ішкі энергиясы молекулалардың ретсіз қозғалысының кинетикалық энергиясы, молекулалардың өзара әсерлесуінші потенциялық энергиясы және ішкі молекулалық энергиясы кіреді. Ішкі энергия жүйе күйінің функциясы болып табылады.

Жүйеге істелген жұмыс (А) сыртқы денелердің жұйеге берген энергиясы.

Жылу мөлшері (Q) жылу алмасу процесінде сыртқы денелердіжүйеге беретін энергиясы.

Ішкі энергия негізінен екі түрлі процесте өзгереді: дененің немесе денеге қарсы сыртқы күштің А жұмыс істеуімен және денеге беретін немесе алынатын Q жылу мөлшері есебінен.

Тепе теңдік күйлер сыртқы орта өзгермеген жағдайда жүйенің параметрлік мәндері қанша қажет болса, сонша тұрақты болып қалатын күйді айтады.

Изопроцестер: 3

Изотермиялық: Бойль Мариотт заңы T=const идеал газдың берілген массасының қысымының көлеміне көбейтіндісі PV=const T=const m=const тұрақты болып қалады.

тұрақты температурада өтетін процесс (изо-равный, термо-теплый) T=const (тұрақты темпераурада) жұйенің параметрлерінің арасындағы тәуелділікті өрнектейтін графикті айтады.

Изобаралық: Гей Люссак (изобаралық процесс үшін) P=const да идеал газ берілген массасының көлем температурада сызықты өзгереді. p=const m=const ші цельсий бойыншы газдың көлемі t шкаласы бойынша температура Тұрақты қысымда өтетін процесті изобаралық процесс деп атайды.

Изохоралық: Шарль заңы Түрақты V=const Идеал газдың берілген массасының қысымы температурадан сызықты өзгереді. Тұрақты көлем кезінде өтетін процесс.

 

Термодинамиканың бірінші бастамасы жүйеге берілген жылу мөлшері жүйенің ішкі энергиясының өсімшесіне және жүйенің сыртқы денелерде атқаратың жұмысына тең.Егер Q>0 жылу беріледі,Q<0 жүйеден жылу алынады,Q=0 адибаталық процесс.

Жүйе параметрлерінің аз ғана өзгерісіне сәйкес келетін термодинамиканың І бастамасы мынадай түрде жазылады. .

Мұндағы элементар жылу мен жұмысы.dU жүйенің ішкі энергиясының өсімшесі.

Идеал газдың изопроцестеріне қолдану

Изохора ,

Изобара

Изотерма

http://5fan.info/meryfsujgyfsjgeyfs.html

Термодинамикның бірінші бастамасы Термодинамикада макраскопиялық денелердің жылулық қасиеттері олардың микроскопиялық табиғатымен байланыстырылмай, көптеген тәжірибелер арқылы анықталған, бастамалар деп аталтын негізгі үш заңға сүйеніп зерттеледі. Термодинамиканың бірінші бастамасы энергияның сақталу және түрлену заңдарын сипаттайды.

3. Есеп.

Қандай да бір газдың қалыпты жағдайдағы орташа квадраттық жылдамдығы 461 м/с. Осы газдың 1 грамындағы молекулалар саны неге тең?

 

№ 10 ЕМТИХАН БИЛЕТІ

1 Классикалық механикадағы күй ұғымы. Масса және импульс. Күш. Ньютонның ІІ заңы. Материялық нүктенің қозғалыс теңдеуі.

Классикалық механикадағы күй туралы ұғым Масса және импульс. Күш. Ньютонның екінші заңы. Материялық нүкте динамикасының теңдеуі

Классикалық механикада бөлшектің күйі оның орнымен (үш координатымен) және осы осьтердегі импульс проекцияларымен сипатталады.

Масса – материяның инерттілік және гравитациялық қасиеттерін анықтайтын сипаттамаларынң бірі болып табылатын физикалық шама. Масса- дененің инерттілігін өлшеуіші. Оның өлшеу бірлігі - кг.

Материялық нүктенің (дененің) m массасы мен v жылдамдығының көбейтіндісіне тең, бағыты жылдамдық бағытымен бағытталған векторлық шама материялық нүктенің импульсы деп аталады.

Күш – денеге басқа денелер тарапынан түсірілген механикалық әсердің нәтижесі. Егер күштің кеңістіктегі бағыты, модулі және түсу нүктесі берілген болса, онда күш туралы мағлұмат толық деп аталады. Механикалық әсерлесулер тікелей өзара тиіскен денелер арасында, сондай-ақ, бір-бірінен қандай да болмасын бір аралықтағы денелердің арасында да болады. Бір-бірінен қашықта орналасқан денелер ф изикалық (мысалы, гравитациялық, электр, магнит) өрістер арқылы әсерлеседі.

Ньютонның екінші заңы - ілгерілемелі қозғалыс динамикасының негізгі заңы. Ол материялық нүктенің (дененің) механикалық қозғалысы оған түсірілген күштердің әсерімен қалай өзгеретінін көрсетеді.

Материялық нүктенің (дененің) алатын үдеуі оны тудыратын күшке тура, ал оның массасына кері пропорционал болады, бағыты түсірілген осы күштің бағытымен бағытталады. .

Ньютонның екінші заңының жалпылама тұжырымдамасы: материялық нүктенің импульсының өзгеру жылдамдығы оған әсер ететін күшке (әсер ететін барлық күштердің тең әсерлісіне) тура пропорционал болады. .

Ньютонның екінші заңынан материялық нүктенің импульсының өзгерісі оған әсер етуші күш импульсына тең екендігі шығады: .

Материялық нүкте динамикасының негізгі заңы классикалық механикадағы себептілік принципін уағыздайды, яғни материялық нүктенің уақыт өтуіне байланысты қозғалыс күйі және кеңістіктегі орны өзгерісі мен оған әсер етуші күш арасындағы бір мәнді байланыс барын, яғни материялық нүктенің бастапқы күйін біле отырып оның кез келген келесі мезеттердегі қозғалыс күйін есептеп алуға мүмкін болатындығы шығады.

2. Еркіндік дәрежелері бойынша энергияның біркелкі бөліну заңы.Идеал газдың жылулық қозғалысының орташа кинетикалық энергиясы. Идеал газдың ішкі энергиясы.

Еркіндік дәрежесі бойынша энергияның біркелкі таралу заңы - классикалық жүйелерге қолданатын статистиканың негізгі заңдарының бірі. Механикалық жүйенің еркіндік дәрежелері саны деп жүйенің орнын анықтауда мүмкіндік беретін тәуелсіз координаталардың жиынтығын айтады. Материалдық нүктенің кеңістіктегі орны оның үш координаттарының мәндерімен анықталады. Газдардың жылу сыйымдылығын өлшегенде атомдарды материалдық нүктелер деп есептеуге болады. Олай болса, бір атомды молекулалар үш ілгерілемелі еркіндік дәрежеге, екі атомды молекулалар – үш ілгерілемелі, және екі айналмалы, көп атомды молекулалар және абсолютті қатты дене – үш ілгерілемелі және үш айналмалы еркіндік дәрежесіне ие болады. Жылулық тепе-теңдік жағдайында молекуланың әр еркіндік дәрежесіне тең орташа бірдей кинетикалық энергиядан келеді. Мұндағы, - Больцман тұрақтысы. Екі немесе көп атомды молекулалар айналмалы және тербелмелі қозғалыстар жасайды. Тербелмелі қозғалыстың болуы кинетикалық энергияның потенциалдық энергияға ауысуынан және керісінше болуымен байланысты. Молекуладағы атомның тербеліс энергиясын ескерсек, орташа кинетикалық және орташа потенциалдық энергиясын қарастыруымыз қажет. Молекуланың толық энергиясы , (8.11) мұндағы i – ілгерілемелі, айналмалы және екі еселенген тербелмелі еркіндік дәрежелері сандарының қосындысы: . (8.12)






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных