Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Испытания реактора 25 апреля 1986 года




Авария произошла 26 апреля 1986 года в 01 ч 23 мин 40 с в ходе проведения проектных испытаний одной из систем обеспечения безопасности, входящей в состав энергоблока с реактором РБМК-1000. Данная система безопасности предусматривала использование механической энергии вращения останавливающихся турбогенераторов для выработки электроэнергии в условиях двух аварийных ситуаций. Одна из них — полная потеря электроснабжения АЭС, в том числе насосов теплоносителя и насосов системы аварийного охлаждения реактора; другая — максимальная проектная авария, в качестве которой рассматривается разрыв трубопровода большого диаметра циркуляционного контура реактора.
По программе испытаний при отключении внешнего электропитания электроэнергия, вырабатываемая турбогенераторами за счет выбега, должна подаваться для запусков насосов системы аварийного охлаждения реактора, что обеспечивает гарантированное охлаждение реактора. Предложение об использовании выбега генератора было от главного конструктора РБМК и было включено в проекты строительства АЭС с реакторами такого типа. Однако энергоблок №4 Чернобыльской АЭС, как и другие энергоблоки с РБМК, принимался в эксплуатацию без опробования этого режима(почему? Такие испытания должны являться составной частью предэксплуатационных испытаний основных проектных режимов энергоблока). Ни на одной, кроме Чернобыльской, АЭС с реакторами РБМК-1000 после ввода их в эксплуатацию проектные испытания по использованию выбега генератора не проводились.
Подобные испытания на энергоблоке №3 Чернобыльской АЭС, проведенные в 1982 г., показали, что требования по характеристикам электрического тока, вырабатываемого за счет выбега турбины, в течение заданного времени не выдерживаются, и необходима доработка системы регулирования возбуждения турбогенератора. Дополнительные испытания с модернизированной системой проводились в 1984 и 1985 годах. При этом моделирование аварийной ситуации проводилось при отключенной ручными задвижками системе аварийного охлаждения реактора.
Испытания на 4-м энергоблоке наметили на 25 апреля 1986 г. в дневное время, при тепловой мощности реактора 700 МВт, до остановки реактора для выполнения плановых ремонтных работ. Следует отметить, что испытания должны были проводиться в режиме пониженной мощности, для которого характерны повышенный, по сравнению с номинальным, расход теплоносителя через реактор, незначительный недогрев теплоносителя до температуры кипения на входе в активную зону и минимальное паросодержание. Эти факторы оказали прямое влияние на масштаб аварии.
В соответствии с запланированной программой нужно было отключить аварийную систему охлаждения активной зоны реактора, которая обеспечивала подачу воды для охлаждения ядерного топлива в аварийных ситуациях. По мере продвижения процедуры отключения реактор работал примерно на половинной мощности, в то время как диспетчер энергосистемы не давал разрешения на дальнейшее уменьшение мощности реактора. Только примерно в 23.00 25 апреля диспетчер энергосистемы дал разрешение на дальнейшее уменьшение мощности реактора.
Для проведения испытания реактор должен был стабилизироваться на тепловой мощности примерно в 1000 МВт, однако из-за ошибки, возникшей в ходе эксплуатации, мощность реактора упала до 30 МВт – операторы «упустили» отравленный ксеноном реактор (отравление ксеноном – самозаглушение реактора при работе в режимах пониженной мощности). Операторы пытались поднять мощность до 700 — 1000 МВт, отключив автоматические регуляторы и высвободив все контрольные стержни вручную. Только примерно в час ночи 26 апреля реактор застабилизировался на уровне примерно в 200 МВт. Хотя в условиях эксплуатации реактора устанавливалось требование о наличии в его активной зоне не менее 30 регулирующих стержней, в ходе эксперимента было задействовано только 6 — 8 регулирующих стержней (если бы реактор и вышел из под контроля, то он заглох бы – этим объясняются подобные действия персонала). Большинство стержней извлекли из активной зоны с целью компенсации процесса отравления реактора.

Принимается решение продолжить программу испытаний при недостаточном по регламенту количеством управляющих стержней в активной зоне (по вышеописанной причине). В результате увеличения потока теплоносителя давление пара падает. Автоматическая система, которая отключает реактор при чрезмерно низком давлении пара, была отключена. Для сохранения мощности реактора операторы вынуждены извлечь практически все оставшиеся компенсирующие стержни после чего реактор приобретает крайнюю нестабильность и операторам приходится каждые несколько секунд делать корректировки, позволяющие поддерживать постоянную мощность. Примерно в это же время операторы сокращают поток теплоносителя с целью сохранения давления пара. Одновременно насосы, запитанные от останавливающейся турбины, начинают подавать меньший объем теплоносителя через реактор. Потеря теплоносителя усугубила нестабильное состояние реактора и увеличила производительность пара в каналах охлаждения, и операторы уже не смогли предотвратить всплеск энергии, которая, по подсчетам. превосходила номинальную мощность реактора в 100 раз. Неожиданное увеличение производства тепла разрушает часть ядерного топлива, а мельчайшие раскаленные топливные частицы вступают в реакцию с водой, что приводит к первому, паровому взрыву, уничтожившему активную зону реактора, а также к разрушению кровли здания реакторного отделения.
В 01 ч 23 мин 40 с оператор управления реактором нажимает кнопку ручной аварийной остановки реактора (причина нажатия кнопки достоверно не установлена) и спустя три секунды появляются сигналы аварийных защит по периоду разгона реактора, а также по превышению мощности. В течение приблизительно трех секунд вытеснители аварийных стержней системы управления и защиты реактора при проектной скорости движения стержней 0,4 м/с проходят расстояние 1,2 м и полностью вытесняют столбы воды, расположенные под ними. Срабатывает «эффект вытеснителей», вследствие чего, согласно расчетам ученых, вводится положительная реактивность и начинается неуправляемый разгон реактора в его нижней части.
Вследствие взрыва происходит выброс раскаленных радиоактивных частиц и графита в атмосферу; разрушенная активная часть реактора остается без защиты. Радиоактивное облако, состоящее из дыма, радиоактивных продуктов деления и частиц ядерного топлива, поднимается в воздух на расстояние до 1 км. Более тяжелые частицы радиоактивного облака оседают на территорию в непосредственной близости от аварийного реактора, а более легкие компоненты, включая продукты деления и практически весь набор благородных газов, явившихся продуктом аварии, относятся преобладающими ветрами в направлении к северо-западу от атомной электростанции.
На оборудовании и разрушенных конструкциях энергоблока начинается пожар, который вызывает клубы пара и пыли, причем огонь охватывает также крышу турбинного зала, запасы дизельного топлива и горючих материалов. Примерно 100 членов пожарных команд, располагавшихся как на территории АЭС, так и вызванных из города Припять, прибыли для тушения возникших пожаров, причем именно эти люди получили наиболее высокие дозы радиоактивного облучения. Пожары потушили около 5.00 того же дня, но в это же время начинается горение графитовой кладки реактора. Интенсивное горение графита становится причиной дисперсии радиоизотопов и продуктов деления, поднявшихся высоко в атмосферу. Выброс продолжается примерно 20 дней, однако его интенсивность значительно снижается на десятый день, когда горение графита удалось, наконец, остановить.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных