Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Законы поглощения света




При распространении света в веществе энергия электромагнитных волн уменьшается. Это явление называется поглощением света в веществе или абсорбцией света. О поглощении света веществом принято судить по изменению его интенсивности в зависимости от пройденного расстояния.

Бугер (1729 г.) экспериментальным путем, а Ламберт (1760 г.) теоретически установили связь между интенсивностью света входящего в вещество I 0 и интенсивностью света I выходящего из вещества:

I = I 0 e -kd, (1)

где k – коэффициент поглощения, зависящий от длины волны падающего света и вида вещества, d – толщина поглощающего слоя, знак «минус» указывает на убывание интенсивности. Закон справедлив, когда падающий поток монохроматичен. Коэффициент поглощения не зависит от интенсивности светаи от толщины слоя d. Из уравнения (1) следует, что коэффициент поглощения численно равен величине, обратной толщине слоя вещества, при прохождении через который интенсивность уменьшается в е = 2,72 раз.

Зависимость коэффициента поглощения от длины волны падающего света называется спектральной характеристикой вещества, определяющей окраску тел в проходящем свете. Тела, имеющие малый коэффициент поглощения в видимой области спектра, являются прозрачными неокрашенными. Например, силикатное стекло толщиной 1 см поглощает лишь около 1% проходящих через него видимых лучей. Ультрафиолетовые и далекие инфракрасные лучи это же стекло поглощает сильно. Цветными прозрачными телами называются тела, проявляющие селективность пропускания света в видимой области спектра. Так, красным является стекло, слабо поглощающее красные и оранжевые лучи, и сильно поглощающие синие, фиолетовые и зеленые.

Селективным отражением света от поверхности объясняется окраска непрозрачных тел. Синие стены хорошо отражают синий свет. Однако, окраска тела зависит не только от оптических свойств поверхности тела (красителя), но и от спектрального состава падающего света. Например, тело, покрытое красной краской, будет казаться черным при освещении его зеленым светом.

В 1862 году Беер применил закон поглощения света для определения малых количеств вещества, растворенного в прозрачном растворителе. Он показал, что для малых концентраций растворенного вещества коэффициент поглощения линейно зависит от числа молекул растворенного вещества на единицу пути света в растворе: k = k’с. Объединенное уравнение Бугера-Ламберта-Беера имеет следующий вид:

I = I 0 e-k’cd , (2)

где k’ – постоянная Беера, не зависящая от концентрации растворенного вещества и толщины слоя d, с – концентрация вещества. Формулу (2) можно представить и в таком виде:

I = I 0 e-k’cd = I 0 (10 lge)-k’cd = I 0 10 -εcd, (3)

где ε = k’lge – молярный коэффициент погашения.

Отношение интенсивности светового потока I, прошедшего через раствор, к интенсивности падающего светового потока I0 называется прозрачностью или пропусканием Т:

10 εcd.

Логарифм величины, обратной пропусканию, носит название экстинкции Е или оптической плотности D:

E = D = = εcd.

Зависимости пропускания Т и оптической плотности D от длины волны падающего света называются спектральными характеристиками образца.

Если в растворе содержится несколько веществ, то результирующая оптическая плотность D равна сумме оптических плотностей компонент:

D = lg (I0 / I) = D 1 +D 2 +… = [ ε 1 с 1 + ε 2 с 2 +… ] d.

Именно поглощенное излучение представляет основной интерес для исследования, так как по закону Бугера-Ламберта-Беера оптическая плотность зависит от толщины слоя и концентрации составных частей поглощающей системы. Если свет проходит через различные поглощающие системы последовательно, то результирующая оптическая плотность D не зависит от порядка их расположения.

Условием применимости закона Беера является пропорциональность числа действующих центров поглощения концентрации растворенного вещества. В реальных растворах, наряду с молекулами поглощающего вещества, на процесс поглощения влияют своими химическими и электростатическими свойствами другие молекулы. Все эти отдельные частички соединены в один общий оптический комплекс, поэтому для концентрированных растворов с их красящими составными частями низкой степени дисперсности, закон Беера теряет свою силу.

Явление поглощения света веществом объясняется тем, что при прохождении электромагнитной волны через вещество часть энергии волны затрачивается на возбуждение колебаний оптических электронов атомов этого вещества. Частично эта энергия вновь возвращается излучению в виде вторичных волн, излучаемых атомами в возбужденном состоянии, частично же она переходит в другие виды энергии (например, во внутреннюю энергию вещества).

Так, в диэлектриках нет свободных электронов, способных направленно двигаться под действием электрического поля электромагнитной волны, и поглощение света связано с явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах. Поэтому они поглощают свет избирательно в зависимости от частоты падающего света. Поглощение велико лишь в областях частот, близких к частотам собственных колебаний электронов в атомах и атомов в молекулах. Для света всех остальных частот диэлектрик практически прозрачен, то есть его коэффициент поглощения близок к нулю.

Наиболее ярко явление резонансного поглощения обнаруживается у разреженных одноатомных газов, обладающих линейчатым спектром поглощения. Дискретные частоты интенсивного (рис. 2). За пределами этих полос k примерно равен нулю, то есть диэлектрики прозрачны. Расширение полос поглощения при переходе вещества из одного агрегатного состояния в другое объясняется взаимодействием атомов друг с другом.

Иная картина наблюдается в металлах. В конденсированном состоянии металлы содержат огромное количество свободных электронов. В электрическом поле световой волны свободные электроны совершают упорядоченное движение и излучают вторичные волны. Благодаря наложению первичной и вторичной волн образуется интенсивная отраженная волна и сравнительно слабая преломленная. Преломленная волна быстро поглощается по мере распространения в металле. Ее энергия расходуется на джоулеву теплоту, которая выделяется токами проводимости, возникающими при действии света на свободные электроны.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных