Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теоритические и практические основы науки биотехнологии




ВВЕДЕНИЕ

 

Биотехнология – это область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуществляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах[1].

Действительно, она включает на первый взгляд, совершенно не связанные между собой разделы научных знаний: микробиологию, анатомию растений и животных, биохимию, иммунологию, клеточную биологию, физиологию растений и животных, различные систематики, экологию, генетику, биофизику, математику и много других областей естествознания.

Постоянно увеличивающееся разнообразие современной биологии началось после окончания второй мировой войны, когда в биологию внедрились другие естественнонаучные дисциплины, такие как физика, химия и математика, которые сделали возможным описание жизненных процессов на новом качественном уровне - на уровне клетки и молекулярных взаимодействий.

Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине текущего столетия, создали реальные предпосылки управления различными (пусть, возможно, и не самыми главными) механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Можно с уверенностью утверждать, что биотехнология является наиболее разительным примером того, как результаты, казалось бы "чистой науки", находят применение в практической деятельности человека. Основой, обеспечивающей благоприятную ситуацию для бурного развития биотехнологии, явились революционные открытия и разработки.

Современная биотехнология опирается на достижения естествознания, техники, технологии, биохимии, микробиологии, молекулярной биологии, генетики. Биологические методы используются в борьбе с загрязнением окружающей среды и вредителями растительных и животных организмов. К достижениям биотехнологии можно также отнести применение иммобилизованных ферментов, получение синтетических вакцин, использование клеточной технологии в племенном деле.

Широкое распространение получили гибридомы и продуцируемые ими моноклональные антитела, используемые в качестве диагностических и лечебных препаратов.

Бактерии, грибы, водоросли, лишайники, вирусы, простейшие в жизни людей играют значительную роль. С давних времен люди использовали их в процессах хлебопечения, приготовления вина и пива, в различных производствах. В настоящее время в связи с проблемами получения ценных белковых веществ, увеличения плодородия почв, очищения окружающей среды от загрязнителей, получения биопрепаратов и другими целями и задачами диапазон изучения и использования микроорганизмов значительно расширился. Микроорганизмы помогают людям в производстве эффективных питательных белковых веществ и биологического газа. Их используют при применении биотехнических методов очистки воздуха и сточных вод, при использовании биологических методов уничтожения сельскохозяйственных вредителей, при получении лечебных препаратов, при уничтожении утильсырья.

В каждом случае помимо знания общих основ этой науки (и сферы производства) обязательно также глубокое знакомство с теми ее разделами, которые будут наиболее близки профилю работы специалиста. Знакомство с биотехнологией необходимо всем выпускникам медицинских вузов независимо от их специализации: биотехнологические методы все более интенсивно проникают в практику диагностики, профилактики и лечения различных заболеваний, современные же концепции биотехнологии способствуют формированию мировоззрения человека, адекватного стремительному течению научно-технического прогресса в современном мире.

В общем смысле технология, как правило, связана с производством, целью которого является удовлетворение потребностей человеческого общества. Иногда высказывается мнение, что биотехнология — это осуществление природного процесса в искусственных, созданных человеком условиях. Однако в последнее десятилетие на основе биотехнологических методов в биореакторах (техногенных нишах) воспроизводятся не только природные, но и не протекающие в природе процессы с использованием ферментов (биокатализаторов — бесклеточных ферментных комплексов), одноклеточных и многоклеточных организмов.

 

Теоритические и практические основы науки биотехнологии

История возникновения и развития биотехнологии включает три этапа.

1 этап- зарождение биотехнологии с древних времен до конца XVIII в. Археологические раскопки показывают, что ряд биотехнологических процессов зародились в древности. На территории древнейших очагов в Месопотамии, Египте сохранились остатки пекарен, пивоваренных заводов, сооруженных 4-6 тысячелетий назад. В 3 тысячелетии до н. э. шумеры изготовляли до двух десят­ков сортов пива. В Древней Греции и Риме широкое распространение получили виноделие и изготовление сыра. В основе пивоварения и виноделия лежит деятельность дрожжевых грибков, сыроделия - молочнокислых бактерий, сычужно­го фермента Получение льняного волокна происходит с разрушением пектино­вых веществ микроскопическими грибами и бактериями. Иными словами, зарождение биотехнологии тесно связано с сельским хозяйством, переработкой расте­ниеводческой и животноводческой продукции.

2 этап(XIX - первая половина XX в.) - становление биотехнологии как
науки. Этот этап связан с началом бурного развития биологических наук: генетики, микробиологии, вирусологии, цитологии, физиологии, эмбриологии. На ру­беже XIX и XX вв. в ряде стран создаются первые биогазовые установки, в кото­рых отходы животноводства и растениеводства под действием микроорганизмов превращались в биогаз (метан) и удобрение. В конце 40-х годов XX, века, с организацией крупномасштабного производства антибиотиков стала развиваться микробиологическая промышленность. Антибиотики нашли широкое примене­ние не только в медицине, но и в сельском хозяйстве для лечения животных и растений, в качестве биодобавок в корма. Были созданы высокоэффективные формы с помощью мутаций. Возникли предприятия, на которых с помощью мик­роорганизмов производились аминокислоты, витамины, органические кислоты, ферменты. В конце 60-х годов получила развитие технология иммобилизованных ферментов.

3 этап(с середины 70-х годов XX века) - ознаменовался развитием био­технологии в различных направлениях с помощью методов генной и клеточной инженерии. Формальной датой рождения современной биотехнологии считается 1972г., когда была создана первая рекомбинативная (гибридная) ДНК, путем встраивания в нее чужеродных генов. До этого момента использовались, главным образом, физические и химические мутагены с целью создания форм микроорга­низмов, синтезирующих ценные для человека вещества в 5 - 10 раз интенсивнее, по сравнению с исходными штаммами.

Биотехнология, как наука окончательно сформировалась во второй половине XX века, когда новые методы в науке обеспечили переход к эффективному их использованию. Данная наука изучает возможности модификации живых организмов и продуктов их жизнедеятельности, для повышения качества жизни человека. Таким образом, биотехнология охватывает широкий спектр научных дисциплин: генетику, биологию, инженерию, робототехнику, эмбриологию, информационные и химические дисциплины. И достижениями в этой науке являются не только большие открытия, как клонирование, гибридизация и т.д.,а также такие незаметные, но помогающие нам жить все же лучше, такие как дачный переносной биотуалет. Основные методы биотехнологий и их достижения. Генная инженерия занимает одно из ведущих мест в современных биотехнологиях, так как благодаря исследованиям и полученному опыту, уже сейчас создаются запрограммированные гены ДНК, которые позволяют получить необходимый результат. Несмотря на то, что первые успешные опыты в генной инженерии проводились в 40-ых годах прошлого века, настоящий прорыв метод получил благодаря разработке первого человеческого рекомбинантного инсулина в 1970 году. Сегодня среди достижений генной инженерии выделяют: лосося с удвоенным темпом роста, деревья, скорость роста которых намного выше скорости обычных деревьев, эко-свинья, отходы которой содержат минимальное количество фосфора, что помогает избежать загрязнения ближайших водоемов и т.д. Клонирование – точное воспроизведение генетического материала любого объекта путем точного копирования ДНК. На сегодняшний день существует только один успешный эксперимент клонирования с помощью метода «переноса ядра» – овца Долли. Гибридизация – процесс образования гибридов с помощью объединения разного генетического материала в одной клетке. Первый результат успешной гибридизации получил Г. Харрис в 1965 году за гетерокарионы, образованные клетками человека и мыши. Данный метод успешно используется в сельскохозяйственной селекции для получения более стойких сортов зерновых, а также для одомашнивания некоторых видов животных и диких растений. Перспективы будущего. Сегодня уже известны примеры вживления в организм человека микрочипов, клонирование человеческих органов находится в стадии разработки, а разработанные бионические конечности достигли уровня имитирования движений человека, кроме того существуют специальные костюмы которые помогают парализованным людям передвигаться, но пока они находятся на стадии тестирования. Помимо технологий для человеческого тела, специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса. Для агрокомплекса ведутся разработки в направлении усовершенствования функций самозащиты растений от насекомых-вредителей, посредством выделения яда. В медицине разрабатываются вакцины против известных болезней, кроме того исследуется область омоложения клеточного уровня человека, что позволит замедлить старение. В промышленном секторе биотехнологии используются для получения биотоплива и биогаза, что снизит загрязнение окружающей среды и сократит размеры использования природных ресурсов. Таким образом, развитие биотехнологических методов существенно изменит жизнь человека в лучшую сторону, посредством повышения качества пищи, использования новых медицинских препаратов, а также понижения уровня загрязнения экологии планеты.

 

Биотехнологические направления имеют своей целью создание и практическое внедрение (т. е. практическое использование) активных веществ и лекарственных препаратов, кормовых добавок, средств защиты и т.д. Однако следует отдавать себе отчет в том, что биотехнология не является чем-то новым, ранее не известным, а представляет собой развитие и расширение набора технологических приемов, корни которых появились тысячи лет тому назад. Биотехнология включает многие традиционные процессы, давно известные и давно используемые человеком. Это пивоварение, хлебопечение, изготовление вина, производство сыра, приготовление многих восточных пряных соусов, а также разнообразные способы утилизации отходов. Во всех перечисленных процессах использовались биологические объекты (пусть даже без достаточных знаний о них), и все эти процессы на протяжении многих лет совершенствовались, правда, эмпирически. Начало этого этапа биотехнологии теряется в глубине веков, и он продолжался примерно до конца XIX в.

Работы великого французского ученого Луи Пастера (1822-1895) заложили фундамент практического использования достижений микробиологии и биохимии в традиционных биотехнологиях (пивоварение, виноделие, производство уксуса) и ознаменовали начало нового, научного периода развития биотехнологии. Для этого периода характерно развитие промышленной биотехнологии, в особенности ферментационных процессов в промышленных масштабах. Были разработаны стерильные процессы производства путем ферментации ацетона, глицерина. Интенсивно изучаются основные группы микроорганизмов – возбудителей процессов брожения, исследуются биохимические особенности данных процессов.

Вторая половина XX-го века является эрой антибиотиков, которые занимают ведущее место в современной химиотерапии бактериальных инфекций и онкологических заболеваний. Использование антибиотиков в медицине способствовало успеху борьбы с тяжелыми инфекциями и в целом прогрессу медицины, демографическим "взрывам" и увеличению продолжительности жизни.

Создание антибактериальных препаратов является одним из наиболее важных достижений ХХ века. Пенициллин, синтезированный более 60 лет назад, открыл новую эру в борьбе с инфекционными болезнями. Сегодня известно около 20 групп антибиотиков, которые продаются под 1000 торговых наименований. Без них невозможно представить себе современную медицину, благодаря им спасены миллионы человеческих жизней. Эволюция создания антибактериальных препаратов во многом отражает уровень развития общества, возможности научно технического прогресса.

Что такое антибиотики? Это вещества, избирательно подавляющие жизнедеятельность микробов. Антибактериальные средства подразделяют на природные, являющиеся продуктами жизнедеятельности микроорганизмов, и получаемые искусственным путем в результате химического синтеза, – так называемые полусинтетические. Как следует из определения, антибиотики активны только в отношении микроорганизмов и грибов. Они не действуют на вирусы. Антибиотик и микроорганизм – это две противоборствующие силы. Изобретатели антибиотиков каждый раз придумывают все более изощренные методы уничтожения микробов, а микробы, эволюционируя, создают порой уникальные, абсолютно непостижимые механизмы защиты. Пенициллины, цефалоспорины поражают микробы, нарушая синтез клеточной стенки микроорганизмов. Макролиды, тетрациклины, линкозамиды ингибируют синтез белка в рибосомах микроорганизмов. Хинолоны, фторхинолоны дезорганизуют репликацию ДНК микробной клетки, а нитрофураны - синтез ДНК. Микроорганизмы, защищаясь, способны вырабатывать ферменты, разрушающие антибиотик. Они укрепляют, по сути, «замуровывают» клеточную стенку, и антибиотик не может проникнуть внутрь. Есть микроорганизмы, которые создали нечто подобное насосу и «выкачивают» проникший в них антибиотик. А «полем боя» является человеческий организм, который реагирует и на микроб, и на антибиотик, и на их противостояние[3].

Реакция организма зависит как от его индивидуальных особенностей (иммунитета, способности метаболизировать продукты обмена, устойчивости центральной и вегетативной нервной систем), так и от характеристики микроба, его инвазивности – умения преодолевать защитные барьеры и диссеминироваться в организме, патогенности – способности вызывать болезнь. Таким образом, лечение инфекционного заболевания антибиотиками – сложная задача, и, решая ее, нужно с большой ответственностью подходить к выбору антибактериальных препаратов.

В настоящее время, приступая к созданию антибиотика, ученые ставят перед собой задачу: создать продукт, влияние которого будет распространяться на максимально большой пласт различных патогенов. Однако в почете те антибактериальные средства, которые, действуя на многие патогены, в отношении некоторых из них все же более агрессивны. Например, разработаны препараты, избирательно действующие на резистентные, устойчивые микроорганизмы, но при этом они уничтожают и другие.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных