Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Распространение света в веществе

На этой лекции будут изучены явления, возникающие при распространении электромагнитных волн в веществе, такие как дисперсия, поглощение и рассеяние света.

 

Дисперсия света.

Дисперсией света называется зависимость показателя преломления вещества от частоты или от длины волны . В результате дисперсии света происходит разложение белого света в спектр при прохождении его через призму. Впервые дисперсию наблюдал Ньютон.

Рассмотрим дисперсию света в призме (рис.1.).

Рис.1.

Монохроматический пучок света падает на призму с показателем преломления под углом . После двукратного преломления на левой и правой гранях призмы, луч отклоняется от первоначального направления на угол .

.

По построению угол и .

Рассмотрим случай, когда и малы, тогда малы и остальные углы , и . Значение синусов малых углов можно поменять на значения углов.

, , но , отсюда .

Подставим выражение для угла в выражение для :

.

Из этого выражения следует, что угол отклонения зависит от преломляющего угла призмы и показателя преломления . Если зависит от длины волны (), то лучи с разными длинами волн отклоняются на разные углы.

Из теории Максвелла следует, что , где - магнитная, а - диэлектрическая проницаемость среды. Оптически прозрачные среды не намагничены, поэтому в оптической области спектра для всех веществ и . Экспериментальные данные противоречат теории Максвелла: - переменная величина, а - постоянная. Значение также не согласуется с опытом. Эти противоречия устраняются электронной теорией Лоренца. Дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле.

Рассмотрим однородный диэлектрик, предположив, что дисперсия света является следствием зависимости от частоты световых волн. Диэлектрическая проницаемость вещества равна:

,

где - мгновенное значение поляризованности, - напряженность электрического поля. Тогда . Из этого выражения видно, что зависит от . Основное значение в данном случае имеет электронная поляризация, то есть вынужденные колебания электронов под действием электрической составляющей поля волны. Для ориентационной поляризации молекул частота колебаний в световой волне очень высока ( Гц). Молекулы просто не успевают повернуться по полю.

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные ядром электроны – оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен , где - заряд электрона, - смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равно , то мгновенное значение поляризованности равно: . Подставив это значение в предыдущую формулу, получим: .

Задача сводиться к определению смещения электрона под действием электрического поля . Поле световой волны является функцией частоты и меняется по гармоническому закону: . Уравнение вынужденных колебаний электрона для простейшего случая (без учета силы сопротивления, обуславливающей поглощения энергии падающей полны) записывается в виде:

,

где - амплитудное значение силы, действующей на электрон со стороны поля волны, - собственная частота колебаний электрона, - масса электрона. Решив это уравнение, найдем в зависимости от констант электрона (, , ) и частоты внешнего поля , то есть решим задачу дисперсии.

Решение уравнения имеет вид , где . Подставляем это значение в выражение для , получим: . Итак квадрат показателя преломления равен:

.

Если в веществе имеются различные заряды , совершающие колебания с различными собственными частотами , то

,

где - масса -ого заряда.

Из последних выражений вытекает, что показатель преломления зависит от частоты внешнего поля, то есть полученные зависимости подтверждают явление дисперсии. На рис.2. приведен график зависимости от .

Рис.2.

В области от до , больше единицы и возрастает с увеличением (нормальная дисперсия). При , . В области от до , меньше единицы и возрастает от до 1 (нормальная дисперсия). Стремление вблизи собственной частоты к бесконечности получилась в результате допущения об отсутствии сил сопротивления при колебаниях электрона. Если учесть силы сопротивления, то график функции от вблизи точки задается штрихованной линией . Область - это область аномальной дисперсии ( убывает при возрастании ).

При нормальной дисперсии возрастает с увеличением (уменьшением ). Зависимость показателя преломления от длины волны приведена на рис. 3.

Рис.3

 

Поглощение света.

Явление уменьшения энергии световой волны при ее распространении в веществе, происходящее вследствие преобразования энергии электромагнитного поля волны во внутреннюю энергию вещества или в энергию вторичного излучения (фотолюминесценцию), имеющего другой спектральный состав и направление распространения, называется поглощением света.

Бугер в 1729 году экспериментально, а Ламберт в 1760 году теоретически установили закон поглощения света.

Интенсивность света при прохождении через поглощающую среду уменьшается по экспоненциальному закону:

,

где и - интенсивности света на входе и выходе из слоя толщиной , - показатель поглощения среды, который зависит от химической природы и состояния вещества, и от длины волны падающего света. не зависит от интенсивности света.

Для разбавленного раствора поглощающего вещества в непоглощающем растворителе выполняется закон Бера:

,

где - концентрация раствора, - коэффициент пропорциональности, не зависящий от концентрации. Отсюда получается закон Бугера-Ламберта-Бера:

.

Зависимость коэффициентов или от длины волны, характеризующая спектр поглощения света в среде, связана с явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах. Поглощение велико в области собственных колебаний электронов и атомов.

Для изолированных атомов (в парах или газах) характерен линейчатый спектр. Дискретные частоты интенсивного поглощения света совпадают с частотами собственного излучения возбужденных атомов этих газов.

У газов с многоатомными молекулами наблюдаются системы тесно расположенных линий, образующих полосы поглощения. Жидкие и твердые вещества – имеют сплошные спектры поглощения, состоящие из широких полос. Это связано с сильным взаимодействием между частицами среды, приводящим к появлению множества дополнительных резонансных частот.

На рис.4. представлена типичная зависимость коэффициента поглощения от длины волны света и зависимость показателя преломления от в области поглощения.

Рис.4.

Из рисунка видно, что внутри полосы поглощения наблюдается аномальная дисперсия ( убывает с уменьшением ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Зависимость коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающие красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый или синий свет, то из-за сильного поглощения света этих волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т.д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие цветов и красок, наблюдающееся в окружающем мире.

 

Рассеяние света.

Рассеянием света называется явление преобразования света веществом, сопровождающееся изменением направления распространения света и проявляющееся как несобственное свечение вещества. Рассеяние света по физическому содержанию представляет дифракцию волн на неоднородностях среды.

Это свечение обусловлено вынужденными колебаниями электронов в атомах, молекулах или ионов рассеивающей среды под действием падающего света.

Как показал Мандельштам в 1907 году, рассеяние света может возникнуть только в оптически неоднородной среде, показатель преломления которой нерегулярно меняется от точки к точке. Примеры таких сред – это мутные среды (дым, туман, эмульсии, коллоидные растворы, матовые стекла), содержащие мелкие частицы, показатель преломления которых отличается от показателя преломления окружающей среды.

Рассеяние света в мутных средах на частицах, размеры которых малы по сравнению с длиной волны, называется явлением Тиндаля. Его можно наблюдать при прохождении света через слой воздуха, заполненного мелкими частицами дыма, через сосуд с водой, в которую добавлено молоко.

Если мутная среда освещается пучком белого света, то сбоку она кажется голубоватой. В свете, прошедшем толстый слой мутной среды, она кажется красноватой. Для света, рассеянного частицами, размеры которых меньше длины волны выполняется закон Рэлея:

.

Поэтому коротковолновый свет сильно рассеивается (голубое небо); на закате и восходе солнца небо красное (синие рассеялись, красные дошли).

Для рассеивающих частиц размерами больше длины волны наблюдается явление, называемое эффектом Ми. Спектральный состав рассеянного света совпадает со спектральным составом падающего света. Этим объясняется белый свет облаков.

<== предыдущая лекция | следующая лекция ==>
Производительность и мощность на привод барабанного режущего аппарата | Цели психологического тестирования личности


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных