Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Тема 2.2 Накопители на магнитных и оптических носителях




Накопители на гибких магнитных дисках: принцип действия, технические характеристики, основные компоненты. Накопители на жестких магнитных дисках: форм-факторы, принцип работы, типы, основные характеристики, режимы работы. Конфигурирование и форматирование магнитных дисков. Утилиты обслуживания жестких магнитных дисков. Логическая структура и формат магнитооптических и компакт-дисков. Приводы CD-R (RW), DVD-R (RW), ZIP: принцип действия, основные компоненты, технические характеристики. Магнитооптические накопители, стримеры, флэш-диски. Обзор основных современных моделей.

Студент должен знать:

- принцип действия и основные компоненты дисковода FDD;

- характеристики и режимы работы накопителя на жестких магнитных дисках;

- принцип работы приводов магнитооптических и компакт-дисков;

- форматы оптических и магнитооптических дисков;

Студент должен уметь:

- записывать информацию на различные носители;

- использовать программные средства технического обслуживания жесткого диска;

- определять основные характеристики накопителей;

Цели занятия:

- - ознакомить студентов с основными компонентами накопителями информации.

- - изучить типы накопителей информации их характеристики.

- - воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости.

- - развитие познавательных интересов, навыков самоконтроля, умения конспектировать.

Ход занятия:

Теоретическая часть.

Хранение данных на магнитных носителях

Практически во всех персональных компьютерах информация хранится на носителях, использующих магнитные или оптические принципы. При использовании магнитных устройств хранения двоичные данные “превращаются” в небольшие металлические намагниченные частички, расположенные на плоском диске или ленте в виде “узора”. Этот магнитный “узор” впоследствии может быть расшифрован в поток двоичных данных.

В основе работы магнитных носителей — накопителей на жестких и гибких дисках — лежит электромагнетизм. Суть его состоит в том, что при пропускании через проводник электрического тока вокруг него образуется магнитное поле (рис. 1). Это поле воздействует на оказавшееся в нем ферромагнитное вещество. При изменении направления тока полярность магнитного поля также изменяется. Явление электромагнетизма используется в электродвигателях для генерации сил, воздействующих на магниты, которые установлены на вращающемся валу.

Однако существует и противоположный эффект: в проводнике, на который воздействует переменное магнитное поле, возникает электрический ток. При изменении полярности магнитного поля изменяется и направление электрического тока (рис. 2).

Головка чтения/записи в любом дисковом накопителе состоит из U-образного ферромагнитного сердечника и намотанной на него катушки (обмотки), по которой может протекать электрический ток. При пропускании тока через обмотку в сердечнике (магнитопроводе) головки создается магнитное поле (рис. 3). При переключении направления протекающего тока полярность магнитного поля также изменяется. В сущности, головки представляют собой электромагниты, полярность которых можно очень быстро изменить, переключив направление пропускаемого электрического тока.

Рис. 1. При пропускании тока через проводник вокруг него образуется магнитное поле

Рис. 2. При перемещении проводника в магнитном поле в нем генерируется электрический ток

Рис. 3. Головка чтения/записи

Магнитное поле в сердечнике частично распространяется в окружающее пространство благодаря наличию зазора, “пропиленного” в основании буквы U. Если вблизи зазора располагается другой ферромагнетик (рабочий слой носителя), то магнитное поле в нем локализуется, поскольку подобные вещества обладают меньшим магнитным сопротивлением, чем воздух. Магнитный поток, пересекающий зазор, замыкается через носитель, что приводит к поляризации его магнитных частиц (доменов) в направлении действия поля. Направление поля и, следовательно, остаточная намагниченность носителя зависят от полярности электрического поля в обмотке головки.

Гибкие магнитные диски обычно делаются на лавсановой, а жесткие — на алюминиевой или стеклянной подложке, на которую наносится слой ферромагнитного материала. Рабочий слой в основном состоит из окиси железа с различными добавками. Магнитные поля, создаваемые отдельными доменами на чистом диске, ориентированы случайным образом и взаимно компенсируются на любом сколько-нибудь протяженном (макроскопическом) участке поверхности диска, поэтому его остаточная намагниченность равна нулю.

Если участок поверхности диска при протягивании вблизи зазора головки подвергается воздействию магнитного поля, то домены выстраиваются в определенном направлении и их магнитные поля больше не компенсируют друг друга. В результате на этом участке появляется остаточная намагниченность, которую можно впоследствии обнаружить. Выражаясь научным языком, можно сказать: остаточный магнитный поток, формируемый данным участком поверхности диска, становится отличным от нуля.

Конструкции головок чтения/записи

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи — чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных типов.

Чаще всего используются головки следующих четырех типов:

ü ферритовые;

ü с металлом в зазоре (MIG);

ü тонкопленочные (TF);

ü магниторезистивные (MR);

ü гигантские магниторезистивные (GMR).

· Ферритовые головки

Классические ферритовые головки впервые были использованы в накопителе Winchester 30-30 компании IBM. Их сердечники делаются на основе прессованного феррита (на основе окиси железа). Магнитное поле в зазоре возникает при протекании через обмотку электрического тока. В свою очередь, при изменениях напряженности магнитного поля вблизи зазора в обмотке наводится электродвижущая сила. Таким образом, головка является универсальной, т.е. может использоваться как для записи, так и для считывания. Размеры и масса ферритовых головок больше, чем у тонкопленочных; поэтому, чтобы предотвратить их нежелательные контакты с поверхностями дисков, приходится увеличивать зазор.

За время существования ферритовых головок их первоначальная (монолитная) конструкция была значительно усовершенствована. Были разработаны, в частности, так называемые стеклоферритовые (композитные) головки, небольшой ферритовый сердечник которых установлен в керамический корпус. Ширина сердечника и магнитного зазора таких головок меньше, что позволяет повысить плотность размещения дорожек записи. Кроме того, снижается их чувствительность к внешним магнитным помехам.

· Головки с металлом в зазоре

Головки с металлом в зазоре (Metal-In-Gap — MIG) появились в результате усовершенствования конструкции композитной ферритовой головки. В таких головках магнитный зазор, расположенный в задней части сердечника, заполнен металлом. Благодаря этому существенно уменьшается склонность материала сердечника к магнитному насыщению, что позволяет повысить магнитную индукцию в рабочем зазоре и, следовательно, выполнить запись на диск с большей плотностью. Кроме того, градиент магнитного поля, создаваемого головкой с металлом в зазоре, выше, а это означает, что на поверхности диска формируются намагниченные участки с более четко выраженными границами (уменьшается ширина зон смены знака).

Эти головки позволяют использовать носители с большой коэрцитивной силой и тонкопленочным рабочим слоем. За счет уменьшения общей массы и улучшения конструкции такие головки могут располагаться ближе к поверхности носителя.

Головки с металлом в зазоре бывают двух видов: односторонние и двусторонние (т.е. с одним и с двумя металлизированными зазорами). В односторонних головках прослойка из магнитного сплава расположена только в заднем (нерабочем) зазоре, а в двусторонних — в обоих. Слой металла наносится методом вакуумного напыления. Индукция насыщения магнитного сплава примерно вдвое больше, чем у феррита, что, как уже отмечалось, позволяет осуществлять запись на носители с большой коэрцитивной силой, которые используются в накопителях высокой емкости. Двусторонние головки в этом отношении лучше односторонних.

· Тонкопленочные головки

Тонкопленочные (Thin Film — TF) головки производятся почти по той же технологии, что и интегральные схемы, т.е. путем фотолитографии. На одной подложке можно “напечатать” сразу несколько тысяч головок, которые получаются в результате маленькими и легкими.

Рабочий зазор в тонкопленочных головках можно сделать очень узким, причем его ширина регулируется в процессе производства путем наращивания дополнительных слоев немагнитного алюминиевого сплава. Алюминий полностью заполняет рабочий зазор и хорошо защищает его от повреждений (сколов краев) при случайных контактах с диском. Собственно сердечник делается из сплава железа и никеля, индукция насыщения которого в 2–4 раза больше, чем у феррита.

Формируемые тонкопленочными головками участки остаточной намагниченности на поверхности диска имеют четко выраженные границы, что позволяет добиться очень высокой плотности записи. Благодаря небольшому весу и малым размерам головок можно значительно уменьшить просвет между ними и поверхностями дисков по сравнению с ферритовыми и MIG-головками: в некоторых накопителях его величина не превышает 0,05 мкм. В результате, во-первых, повышается остаточная намагниченность участков поверхности носителя и, во-вторых, увеличивается амплитуда сигнала и улучшается соотношение “сигнал–шум” в режиме считывания, что в итоге сказывается на достоверности записи и считывания данных.

В настоящее время тонкопленочные головки используются в большинстве накопителей высокой емкости, особенно в малогабаритных моделях, практически вытеснив головки с металлом в зазоре. Их конструкция и характеристики постоянно улучшаются, но, скорее всего, в ближайшее время они будут вытеснены магниторезистивными головками.

· Магниторезистивные головки

Магниторезистивные (Magneto-Resistive — MR) головки появились сравнительно недавно. Они разработаны компанией IBM и позволяют добиться самых высоких значений плотности записи и быстродействия накопителей. Впервые магниторезистивные головки были установлены в накопителе на жестких дисках емкостью 1 Гбайт (3,5") компании IBM в 1991 году.

Все головки являются детекторами, т.е. регистрируют изменения в зонах намагниченности и преобразуют их в электрические сигналы, которые могут быть интерпретированы как данные. Однако при магнитной записи существует одна проблема: при уменьшении магнитных доменов носителя уменьшается уровень сигнала головки и существует вероятность принять шум за “настоящий” сигнал. Для решения этой проблемы необходимо иметь эффективную головку чтения, которая более достоверно сможет определить наличие сигнала.

Магниторезистивные головки дороже и сложнее головок других типов, поскольку в их конструкции есть добавочные элементы, а технологический процесс включает несколько дополнительных этапов. Ниже перечислены основные отличия магниторезистивных головок от обычных:

v к ним должны быть подведены дополнительные провода для подачи измерительного тока на резистивный датчик;

v в процессе производства используется 4–6 дополнительных масок (фотошаблонов);

v благодаря высокой чувствительности магниторезистивные головки более восприимчивы к внешним магнитным полям, поэтому их приходится тщательно экранировать.

Во всех рассмотренных ранее головках в процессе записи и считывания “работал” один и тот же зазор, а в магниторезистивной головке их два — каждый для своей операции. При разработке головок с одним рабочим зазором приходится идти на компромисс при выборе его ширины. Дело в том, что для улучшения параметров головки в режиме считывания нужно уменьшать ширину зазора (для увеличения разрешающей способности), а при записи зазор должен быть шире, поскольку при этом магнитный поток проникает в рабочий слой на большую глубину (“намагничивая” его по всей толщине). В магниторезистивных головках с двумя зазорами каждый из них может иметь оптимальную ширину. Еще одна особенность рассматриваемых головок заключается в том, что их записывающая (тонкопленочная) часть формирует на диске более широкие дорожки, чем это необходимо для работы считывающего узла (магниторезистивного). В данном случае считывающая головка “собирает” с соседних дорожек меньше магнитных помех.

· Гигантские магниторезистивные головки

В 1997 году IBM анонсировала новый тип магниторезистивных головок, обладающих намного большей чувствительностью. Они были названы гигантскими магниторезистивными головками (Giant Magnetoresistive — GMR). Такое название они получили на основе используемого эффекта (хотя по размеру были меньше стандартных магниторезистивных головок). Эффект GMR был открыт в 1988 году в кристаллах, помещенных в очень сильное магнитное поле (приблизительно в 1 000 раз превышающее магнитное поле, используемое в накопителях на жестких дисках).

Способы кодирования данных

Данные на магнитном носителе хранятся в аналоговой форме. В то же время сами данные представлены в цифровом виде, так как являются последовательностью нулей и единиц. При выполнении записи цифровая информация, поступая на магнитную головку, создает на диске магнитные домены соответствующей полярности. Если во время записи на головку поступает положительный сигнал, магнитные домены поляризуются в одном направлении, а если отрицательный — в противоположном. Когда меняется полярность записываемого сигнала, происходит также изменение полярности магнитных доменов.

Если во время воспроизведения головка регистрирует группу магнитных доменов одинаковой полярности, она не генерирует никаких сигналов; генерация происходит только тогда, когда головка обнаруживает изменение полярности. Эти моменты изменения полярности называются сменой знака. Каждая смена знака приводит к тому, что считывающая головка выдает импульс напряжения; именно эти импульсы устройство регистрирует во время чтения данных. Но при этом считывающая головка генерирует не совсем тот сигнал, который был записан; на самом деле она создает ряд импульсов, каждый из которых соответствует моменту смены знака.

Чтобы оптимальным образом расположить импульсы в сигнале записи, необработанные исходные данные пропускаются через специальное устройство, которое называется кодером/декодером (encoder/decoder). Это устройство преобразует двоичные данные в электрические сигналы, оптимизированные в аспекте размещения зон смены знака на дорожке записи. Во время считывания кодер/декодер выполняет обратное преобразование: восстанавливает из сигнала последовательность двоичных данных. За прошедшие годы было разработано несколько методов кодирования данных, причем главной целью разработчиков было достижение максимальной эффективности и надежности записи и считывания информации.

При работе с цифровыми данными особое значение приобретает синхронизация. Во время считывания или записи очень важно точно определить момент каждой смены знака. Если синхронизация отсутствует, то момент смены знака может быть определен неправильно, в результате чего неизбежна потеря или искажение информации. Чтобы предотвратить это, работа передающего и принимающего устройств должна быть строго синхронизирована. Существует два пути решения данной проблемы. Во-первых, синхронизировать работу двух устройств, передавая специальный сигнал синхронизации (или синхросигнал) по отдельному каналу связи. Во-вторых, объединить синхросигнал с сигналом данных и передать их вместе по одному каналу. Именно в этом и заключается суть большинства способов кодирования данных.

Хотя разработано великое множество самых разнообразных методов, на сегодняшний день реально используются только три из них:

ü частотная модуляция (FM);

ü модифицированная частотная модуляция (MFM);

ü кодирование с ограничением длины поля записи (RLL).

Частотная модуляция (FM)

Метод кодирования FM (Frequency Modulation — частотная модуляция) был разработан прежде других и использовался при записи на гибкие диски так называемой одинарной плотности (single density) в первых ПК. Емкость таких односторонних дискет составляла всего 80 Кбайт. В 1970-х годах запись по методу частотной модуляции использовалась во многих устройствах, но сейчас от него полностью отказались.

Модифицированная частотная модуляция (MFM)

Основной целью разработчиков метода MFM (Modified Frequency Modulation — модифицированная частотная модуляция) было сокращение количества зон смены знака для записи того же объема данных по сравнению с FM-кодированием и соответственно увеличение потенциальной емкости носителя. При этом способе записи количество зон смены знака, используемых только для синхронизации, уменьшается. Синхронизирующие переходы записываются только в начало ячеек с нулевым битом данных и только в том случае, если ему предшествует нулевой бит. Во всех остальных случаях синхронизирующая зона смены знака не формируется. Благодаря такому уменьшению количества зон смены знака при той же допустимой плотности их размещения на диске информационная емкость по сравнению с записью по методу FM удваивается.

Вот почему диски, записанные по методу MFM, часто называют дисками двойной плотности (double density). Поскольку при рассматриваемом способе записи на одно и то же количество зон смены знака приходится вдвое больше “полезных” данных, чем при FM-кодировании, скорость считывания и записи информации на носитель также удваивается.

Кодирование с ограничением длины поля записи (RLL)

На сегодняшний день наиболее популярен метод кодирования с ограничением длины поля записи (Run Length Limited — RLL). Он позволяет разместить на диске в полтора раза больше информации, чем при записи по методу MFM, и в три раза больше, чем при FM-кодировании. При использовании этого метода происходит кодирование не отдельных битов, а целых групп, в результате чего создаются определенные последовательности зон смены знака.

Метод RLL был разработан IBM и сначала использовался в дисковых накопителях больших машин. В конце 1980-х годов его стали использовать в накопителях на жестких дисках ПК, а сегодня он применяется почти во всех ПК.

Измерение емкости накопителя

В декабре 1998 года Международная электротехническая комиссия (МЭК), занимающаяся стандартизацией в области электротехники, представила в качестве официального стандарта систему названий и символов единиц измерения для использования в области обработки и передачи данных. До недавнего времени при одновременном использовании десятичной и двоичной систем измерений один мегабайт мог быть равен как 1 млн байт (106), так и 1 048 576 байт (220). Стандартные сокращения единиц, используемые для измерения емкости магнитных и других накопителей, приведены в табл. 1.

В соответствии с новым стандартом 1 MiB (mebibyte) содержит 220 (1 048 576) байт, а 1 Мбайт (мегабайт) — 106 (1 000 000) байт. К сожалению, не существует общепринятого способа отличать двоичные кратные единицы измерения от десятичных. Другими словами, английское сокращение MB (или M) может обозначать как миллионы байтов, так и мегабайты.

Как правило, объемы памяти измеряются в двоичных единицах, но емкость накопителей — и в десятичных и в двоичных, что часто приводит к недоразумениям. Заметьте также, что в английском варианте биты (bits) и байты (Bytes) отличаются регистром первой буквы (она может быть строчной или прописной). Например, при обозначении миллионов битов используется строчная буква “b”, в результате чего единица измерения миллион битов в секунду обозначается Mbps, в то время как MBps означает миллион байтов в секунду.

Что такое жесткий диск

Самым необходимым и в то же время самым загадочным компонентом компьютера является накопитель на жестком диске. Как известно, он предназначен для хранения данных, и последствия его выхода из строя зачастую оказываются катастрофическими. Для правильной эксплуатации или модернизации компьютера необходимо хорошо представлять себе, что же это такое — накопитель на жестком диске.

Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет), их нельзя согнуть; отсюда и появилось название жесткий диск (рис. 4). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk). Существуют также накопители со сменными дисками, например устройства Iomega Zip и Jaz.

Новейшие достижения

Почти за 20 лет, прошедших с того времени, как жесткие диски стали привычными компонентами персональных компьютеров, их параметры радикально изменились. Чтобы дать некоторое представление о том, как далеко зашел процесс усовершенствования жестких дисков, приведем самые яркие факты.

Максимальная емкость 5,25-дюймовых накопителей увеличилась от 10 Мбайт (1982 год) до 180 Гбайт и больше для 3,5-дюймовых накопителей половинной высоты (Seagate Barracuda 180). Емкость 2,5-дюймовых дисководов с высотой не более 12,5 мм, которые используются в портативных компьютерах, выросла до 32 Гбайт (IBM Travelstar 32GH). Жесткие диски объемом менее 10 Гбайт в современных настольных компьютерах практически не используются.

Скорость передачи данных увеличилась от 85–102 Кбайт/с в компьютере IBM XT (1983 год) до 51,15 Мбайт/с в наиболее быстродействующих системах (Seagate Cheetah 73LP).

Среднее время поиска (т.е. время установки головки на нужную дорожку) уменьшилось от 85 мс в компьютере IBM XT (1983 год) до 4,2 мс в одном из самых быстродействующих на сегодняшний день дисководе (Seagate Cheetah X15).

В 1982 году накопитель емкостью 10 Мбайт стоил более 1500 долларов (150 долларов за мегабайт). В настоящее время, стоимость жестких дисков снизилась до половины цента за мегабайт.

Рис. 4. Вид накопителя на жестких дисках со снятой верхней крышкой

Принципы работы накопителей на жестких дисках

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый), как показано на рис. 5.

В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр (рис. 6). Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

Жесткие диски вращаются намного быстрее, чем гибкие. Частота их вращения даже в большинстве первых моделей составляла 3 600 об/мин (т.е. в 10 раз больше, чем в накопителе на гибких дисках) и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла. Например, в портативном компьютере Toshiba диск объемом 3,3 Гбайт вращается с частотой 4 852 об/мин, но уже существуют модели с частотами 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин. Скорость работы того или иного жесткого диска зависит от частоты его вращения, скорости перемещения системы головок и количества секторов на дорожке.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка “столкнется” с диском, вращающимся “на полном ходу”. Если удар будет достаточно сильным, произойдет поломка головки. Последствия этого могут быть разными — от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные “взлеты” и “приземления” головок, а также более серьезные потрясения.


 

 

 

Рис. 5. Дорожки и секторы накопителя на жестких дисках

Рис. 6. Цилиндр накопителя

на жестких дисках


Дорожки и секторы

Дорожка — это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета HD (High Density) формата 3,5 дюйма (емкостью 1,44 Мбайт) содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1), и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочей служебной информации, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

В начале каждого сектора записывается его заголовок (или префикс — prefix portion), по которому определяется начало и номер сектора, а в конце — заключение (или суффикс — suffix portion), в котором находится контрольная сумма (checksum), необходимая для проверки целостности данных. В большинстве новых дисководов вместо заголовка используется так называемая запись No-ID, вмещающая в себя больший объем данных. Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт.

Для наглядности представьте, что секторы — это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (в нашей аналогии это будет соответствовать номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

Форматирование дисков

Различают два вида форматирования диска:

ü физическое, или форматирование низкого уровня;

ü логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Explorer Windows 9x или команды DOS FORMAT выполняются обе операции, но для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, — разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня (которые могут быть различными для разных операционных систем). Это позволяет совмещать несколько операционных систем на одном жестком диске.

При организации нескольких разделов на одном накопителе каждый из них может использоваться для работы под управлением своей операционной системы либо представлять отдельный том (volume), или логический диск (logical drive). Том, или логический диск, — это то, чему система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

1. Форматирование низкого уровня.

2. Организация разделов на диске.

3. Форматирование высокого уровня.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных