Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Система скрещивания 2 страница




 

44. Сравнительная характеристика ранних этапов эмбрионального развития хордовых животных…

Эмбриональное развитие – период жизни организма, к-й начинается с образуя зиготы и закан-ся рождением или выходом зародыша из яйца. Дробление – многократное деление зиготы путем митоза. Образование множества мелких клеток (при этом они растут), а затем шара с полостью внутри – бластулы (многоклеточный 1-слойный зародыш). Бывает: полное (равномерное- мало белка и клетки одинаковые и неравномерное- на верхнем полюсе кл. поменьше, там нет желтка, а снизу есть желток и более крупные клетки) и неполное (дискоидальное и поверхностное). Различают:-целобластула (полное, равномерное дробление)- амфибластула (полное, но неравномерное), -дискобластула (при неполном на желтке), перибластула (в середине желтка), - стерробластула (клетки заходят в желток). У амфибий амфибластула бластомеры крыши мелкие, дно состоит из крупных кл, заполнено желтком. У птиц дискобласула, млекопит-х при дроблении выдел-ся более мелкие внезародышевые бластомеры, кот. в дальнейшем обр-т трофобласт и выдел-ся более крупн-е бластомеры, из кот, получ-ся бластодермический пузырь – морула. Гаструляция – переход от бласулы к очередному этепу. Гаструла чашевидный зародыш, состоящий из слоев (зарод-х листков-наружного – эктодермы), внутреннего- эндодермы). Способы гаструляции: выпячивание (инвагинация) кл. впячив-ся во внутрь кл. дна бластулы; иммиграция – кл. покидают свое место, т.е. выпадают в полость бластулы выстраиваются; расслаивание – происходит деление кл. параллельно поверхности; эпиболия (обрастание). Если на мете бластопора (спинная губа) обр-ся ротовое отверстие – первичноротые животные (б/п), если развив-ся анальное отверстие на месте бластопора, а рот с др. стороны – вторичноротые (иглокожие, хордовые). Кишечнополостные, губки – примеры животных, к-е в пр-се эвол-ии остановились на двухслойной стадии. У всех остальных процессы гаструляции или после ее завершения из эндодермы обр-ся еще и зародышевый листок – мезодерма. Диффиринцировака кл. каждого зародышевого листка приводит к образованию тканей и органов, т.е. к органогенезу. И эктодермы у позв-х жив-х образ-ся нерв-я трубка – зачаток ЦНС, органы чувств, покровный эпителий с его железами и производными структурами (волосы, перья, когти, копыта),. Из эндодермы формир-ся кишечник, печень, поджел.железа, и их производные (легкие, плавательный пузырь, щитов-я железе). Из мезодермы развив-ся мышечная и все виды соединит-х тканей, кровеносная, выделительная, половая системы. Одновременно с мезодермой из эндодермы обр-ся хорда – гибкий скелетный тяж, распол-й у эмбрионов всех хордовых на спинной стороне, впоследствии хорда у всех позвоночных замещается позвоночником. Нервная трубка, хорда и кишечник создают осевой комплекс органов зародыша, кот. определяет двухсторон-ю симметрию тела. Важной особенностью эмбрио-го разв-я амниот настоящих наземных позвоночных (пресмык-ся, птиц, млекопит-х, чел.) яв-ся разв-е 3-х внезародышевых оболочек. Амниот внутренняя зародышеая оболочка (наполнены жидкостью мешок, окружающий зародыш защищ-й его от механ-х повреждений высыхания). Ф-ицю наружной зарод-й оболочки выпол-т хорион (ворсинчатая оболочка). Аллантоис – мешок, связ-й с задней кишкой зародыша.

 

45. Современные представления о гомеостазе и его константах. Значение гомеостаза…

Кровь, лимфа и тканевая жидкость являются внутренней средой организма. Омывая все клетки, внутренняя среда доставляет им вещества, необходимые для жизнедеятельности, и уносит конечные продукты обмена. Кроме крови, лимфы и тканевой жидкости во внутреннюю среду отдельных органов входят спинно-мозговая, суставная, плевельная и другие жидкости. В отличие от непрерывно изменяющейся внешней среды внутренняя среда относительно постоянна по своему составу и физико-химическим свойствам (t°, осмотическое давление, рН и др.) и параметры её колеблются лишь в очень узких пределах. Постоянство химического состава и физико-химических свойств внутренней среды является важной особенностью организмов высших животных. Для обозначения этого постоянства американский физиолог Уолтер Кеннон в 1929 г. предложил термин - гомеостаз (от греч. homoios - подобный, stasis - стояние). Однако идея о существовании физиологических механизмов, направленных на поддержание постоянства внутренней среды организма, была высказана еще во 2-й половине 19 века Клодом Бернаром. К. Бернар рассматривал стабильность физико-химических условий во внутренней cреде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. Явления гомеостаза наблюдаются на разных уровнях биологической организации. Гомеостаз выражается в наличии ряда жестких и пластичных биологических констант, т.е. устойчивых количественных показателей, характеризующих нормальное состояние организма. Эти константы непрерывно колеблются около постоянных уровней. Диапазон колебаний очень мал у жестких констант (например, у осмотического давления крови) и достаточно большой у пластичных констант (например, уровень кровяного давления). Константами гомеостаза является: температура тела, осмотическое давление крови и тканевой жидкости, содержание в них ионов натрия, калия, кальция, хлора и фосфора, а также молекул белков и сахара, концентрация водородных ионов, кровяное давление и ряд других. Следует иметь в виду, что постоянство состава является не абсолютным, а относительным и динамическим. Это постоянство достигается непрерывно совершаемой работой ряда органов и тканей, в результате которой выравниваются происходящие под влиянием изменений внешней среды и в результате жизнедеятельности организма сдвиги в составе и физико-химических свойствах внутренней среды. Дополнительные физиологические механизмы обеспечивают стабилизацию внутренней среды отдельных органов (например, гематоэнцефалический и гематоофтальмический барьеры определяют особые свойства жидкостей, окружающих клетки мозга и глаза). Роль разных органов и их систем в сохранении гомеостаза различна. Так, система органов пищеварения обеспечивает поступление в кровь питательных веществ в том виде, в каком они могут быть использованы клетками организма. Система органов кровообращения осуществляет непрерывное движение крови и транспорт различных веществ в организме, в результате чего питательные вещества, кислород и различные химические соединения, образующиеся в самом организме, поступают к клеткам, а продукты распада переносятся к органам, которые их выводят из организма. Органы дыхания обеспечивают поступление кислорода в кровь и удаление СО2 из организма. Печень и ряд др. органов осуществляют значительное число химических превращений - синтез и расщепление многих химических соединений. Органы выделения - почки, легкие, потовые железы, кожа - удаляют из организма конечные продукты распада органических веществ и поддерживают постоянство содержания воды и электролитов в крови, а следовательно, в тканевой жидкости и в клетках организма. В поддержании гомеостаза важнейшая роль принадлежит нервной системе. Чутко реагируя на различные изменения внешней или внутренней среды, она так регулирует деятельность органов и систем, что предупреждаются и выравниваются сдвиги и нарушения, которые происходят или могли бы произойти в организме. Гомеостаз имеет определенные границы. При длительном пребывании организма в условиях, которые значительно отличаются от тех, к которым он приспособлен, гомеостаз нарушается и могут произойти сдвиги, несовместимые с нормальной жизнью. Высокий уровень гомеостаза возникает лишь на определенных этапах филогенеза (у высших животных) и онтогенеза (у новорожденных нет такого постоянства температуры тела, состава и свойств внутренней среды, как у взрослого организма). Высокая эффективность механизмов гомеостаза у млекопитающих, и в частности у человека, обеспечивает возможность их жизнедеятельности при значительных изменениях окружающей среды. Животные, неспособные поддерживать некоторые параметры внутренней среды, вынуждены жить в более узком диапазоне параметров окружающей среды (в частности, при более постоянных климатических условиях). Даже небольшие нарушения гомеостаза приводят к патологии. Поэтому определение относительно постоянных физиологических показателей, таких, как температура тела, артериальное давление крови, ее состав и др. показатели, имеют большое диагностическое значение в медицине. Дознание закономерностей гомеостаза человека имеет большое значение для выбора эффективных методов лечения многих заболеваний. Циркуляция крови является необходимым условием поддержания гомеостаза и постоянства состава самой крови. Остановка сердца и прекращение движения крови немедленно приводят организм к гибели. Постоянство состава и свойств крови регулируется ЦНС и железами внутренней секреции. Пути обеспечения гомеостаза: пассивное приспособление, активный поиск благоприятных условий, творческое преобразование окружающих условий. У растений основное значение для поддержания гомеостаза на клеточном уровне имеют плазмалемма (клеточная мембрана, отделяющая цитоплазму растительной клетки от оболочки клетки) и тонопласт. Плазмалемма регулирует приток в клетку ионов и воды из внешней среды и выделение избыточных ионов Н+,Na+, Ca+. Тонопласт регулирует поступление в протоплазму запасных веществ из вакуолей при их недостатке и удаление в вакуоль - при избытке. На тканевом уровне в поддержании гомеостаза у растений участвуют плазмодесмы, которые регулируют межклеточные потоки углеводов и других веществ. Кроме физиологии, понятие гомеостаз используется в генетике и экологии. Генетическим, или популяционным гомеостазом называют способность популяции поддерживать относительную стабильность и целостность генотипической структуры в изменяющихся условиях среды. Популяционный гомеостаз достигается посредством сохранения генетического равновесия частоты аллелей при свободном скрещивании особей в популяциях путем поддержания гетерозиготности и полиморфизма. Изучение гомеостаза - актуальная задача при исследовании закономерностей микроэволюции. Гомеостаз развития - это способность данного генотипа создавать определенный фенотип в широком диапазоне условий. Понятие гомеостаз широко используется в экологии при характеристике состояния экосистем и их устойчивости. Благодаря гомеостазу поддерживается постоянства видового состава и численности особей в биоценозах.

 

46. Современные представления о механизмах иммунитета. Специфический и неспецифический иммунитет. Виды иммунитета. Нарушения иммунных реакций. Одним из основоположников науки о механизмах иммунных (защитных) реакций организма является французский ученый Луи Пастер, который разработал и ввел в практику вакцинацию как метод борьбы с инфекционными болезнями. Русский ученый И.И.Мечников разработал клеточную теорию иммунитета, установив механизм клеточного иммунитета, согласно которому невосприимчивость организма определяется фагоцитарной активностью лейкоцитов. Немецкий ученый Пауль Эрлих создал гуморальную теорию иммунитета, которая объясняла невосприимчивость организма выработкой в крови защитных гуморальных веществ - антител. По современным представлениям иммунитетом называется способность организма отвечать защитными реакциями на все, что ему генетически чужеродно, т.е. на микробы, вирусы, чужие клетки и ткани, на собственные, но генетически измененные клетки, а также на некоторые яды и токсины. Этим повреждающим агентам дали общее название антигены. В результате выработки иммунитета организм приобретает устойчивость к повторным воздействиям таких же антигенов, которые быстро нейтрализуются. Защита от антигенов осуществляется посредством неспецифических и специфических механизмов, которые в свою очередь подразделяются на гуморальные и клеточные. Неспецифические механизмы используются для обезвреживания даже тех антигенов, с которыми организм ранее вообще не сталкивался. Неспецифический гуморальный иммунитет создают защитные белки лизоцим, интерферон и др., постоянно имеющиеся в плазме крови. Неспецифический клеточный иммунитет обусловлен фагоцитарной активностью эозинофилов, базофилов, нейтрофилов и моноцитов, что обнаружил И.И.Мечников. Неспецифический гуморальный и неспецифический клеточный иммунитет обусловливают наследственный иммунитет. При наличии наследственного иммунитета организм не восприимчив к инфекции от рождения. Различают видовой наследственный иммунитет и индивидуальный наследственный иммунитет. Человечеству присущ, например, видовой наследственный иммунитет к ящуру, нa 1,5 млн. заболеваний ящуром сельхозживотных приходится всего один случай заболевания человека. Акулы почти не страдают инфекционными заболеваниями, раны у них не подвержены нагноению. В отличие от неспецифических механизмов, лежащих в основе наследственного иммунитета, специфические механизмы обеспечивают приобретенный иммунитет. Специфические механизмы основаны на "запоминании" антигена при первом контакте с ним организма, "узнавании" его при повторном контакте и быстром уничтожении с помощью особой разновидности Т-лимфоцитов (Т-киллеров) и специально синтезированных антител, преимущественно иммуноглобулинов. Приобретенный иммунитет подразделяется на активно приобретенный, образующийся после прививки или перенесения данного заболевания, и пассивно приобретенный, образующийся вследствие введения сыворотки крови организма, перенесшего данное заболевание. Для образования активного иммунитета с целью предохранения от заразных болезней производят прививки, т.е. вводят в организм вакцины. Вакцины состоят из убитых, или живых, но ослабленных микробов или вирусов. Активный иммунитет длится в течение месяцев, лет и даже десятков лет. Различают активно приобретенный естественным путем иммунитет (после перенесения заболевания) и активно приобретенный искусственным путем иммунитет (после прививок). При обоих видах активного иммунитета в организме в крови образуется антитела после введения вакцины или перенесения заболевания. При пассивном иммунитете готовые антитела содержатся в сыворотках крови, вводимых в организм. В развитии защитных реакций организма основную роль играют лимфоциты. Лимфоциты образуются из стволовых клеток костного мозга. Выходя из костного мозга одна часть стволовых клеток направляется к вилочковой железе или тимусу, где размножаются и превращаются в тимусзависимые лимфоциты, или Т-лимфоциты. Другая часть стволовых клеток не проходит через вилочковую железу, а превращается в лимфоциты в других органах. У птиц таким органом является фабрициева сумка (Bursa), поэтому этот вид лимфоцитов получил название В-лимфоциты. У млекопитающих и человека В-лимфоциты созревают в лимфатических узлах. В-лимфоциты живут несколько дней, а затем начинают размножаться, производя идентичные дочерние клетки. Т-лимфоциты обеспечивают клеточный иммунитет. Различные разновидности Т-лимфоцитов выполняют разные функции. Так, Т-лимфоциты - киллеры (клетки-убийцы) соединяются с чужеродными клетками и убивают их. В мембрану киллеров встроены рецепторные белки, которые представляют собой антитела, возможно, фиксированные иммуноглобулины. Именно эти рецепторы осуществляют контакт лимфоцитов с чужеродными антигенами и их обезвреживание. Этот процесс требует участия так называемых Т-хелперов (лимфоцитов-помощников). Т-хелперы помогают также В-лимфоцитам синтезировать антитела. Третья группа Т-лимфоцитов - это так называемые Т-клетки иммунологической памяти. Эти клетки, живущие более 10 лет, циркулируют в крови и после первого контакта с антигеном "запоминают" его на долгие годы. При повторном контакте с этим же антигеном клетки иммунологической памяти его "узнают" и обеспечивают быструю его нейтрализацию. Четвертая разновидность Т-лимфоцитов - Т-супрессоры, способны подавлять выработку антител В-лимфоцитами и активность других Т-лимфоцитов. В-лимфоциты обеспечивают гуморальный иммунитет. При попадании в организм антигена В-лимфоциты превращаются сначала в плазмобласты, которые в результате ряда последовательных делений дают плазматические клетки. Цитоплазма плазматических клеток богата рибосомами, активно вырабатывающими антитела, или иммуноглобулины. В выработке антител участвуют Т-хелперы, однако точный механизм их участия пока не известен. Плазматические клетки строго специфичны по отношению к определенным антигенам - каждая клетка синтезирует только один тип антител. Антитела, или иммуноглобулины, относятся к сложным белкам -гликопротеидам. Они специфически связываются с чужеродными веществами - антигенами. По строению молекулы иммуноглобулины бывают мономерные и полимерные. Каждая молекула имеет в своих цепях постоянные (СООН-концевые) и вариабельные (меняющиеся) (NH2 -концевые) части. Вариабельные части образуют активный центр (полость особой конфигурации, по размерам и структуре соответствующую антигену), который определяет способность антитела специфически связываться с антигеном. В результате этого связывания образуется прочный комплекс антиген-антитело. У человека различают 5 типов иммуноглобулинов: Ig G основные действующие молекулы иммунитета, проходящие через плаценту; Ig M - молекулы раннего противоинфекционного ответа, рецепторы В-лимфоцитов; Ig A - молекулы, обусловливающие местный иммунитет на слизистых оболочках и в секретах слюнных, слезных и молочных желез; Ig D - рецепторы В-лимфоцитов;Ig E - реагины, эффекторы аллергии и противопаразитарного иммунитета.. Появившаяся в последние годы болезнь СПИД (синдром приобретенного иммунодефицита) вызывается ретравирусом ВИЧ, который избирательно поражает в организме Т-лимфоциты-хелперы, в результате чего специфические механизмы иммунной системы перестают действовать. Больной становится практически беззащитным перед любой самой безобидной инфекцией. Кроме Т-хелперов, ВИЧ поражает моноциты, микрофаги и клетки ЦНС, имеющие на своей поверхности рецептор Т4, через который вирус проникает в клетку. Иммунитет также подавляется под действием ионизирующего облучения.

 

47. Раздражимость и возбудимость клетки. Биоэлектрические явления в состоянии покоя и деятельности клетки…

Раздражимостью называется способность живых клеток, тканей или целого организма отвечать на внешние воздействия изменением своей структуры, а также возникновением, усилением или ослаблением своей деятельности. Эти внешние воздействия называют раздражителями, ответные реакции на них клеток, тканей и всего организма - биологическими реакциями. Сам процесс воздействия раздражителя называется раздражением. По своей природе раздражители могут быть химическими, электрическими, механическими, температурными, радиационными, световыми, биологическими и др. По своему биологическому значению для каждой клетки все раздражители делятся на адекватные и неадекватные. Адекватными называются те раздражители, которые при минимальной силе раздражения вызывают возбуждение в данном виде клеток, выработавших в процессе эволюции специальную способность реагировать на эти раздражители. Чувствительность клетки к адекватным раздражителям очень велика. Все остальные раздражители называют неадекватными. В той или иной степени способны отвечать на раздражение все живые клетки и ткани. Однако нервная, мышечная и железистая ткань в отличие от других способны осуществлять быстрые реакции на раздражения. Эти ткани получили название возбудимых тканей. К возбудимым клеткам относят и специализированные рецепторные клетки, например, палочки и колбочки сетчатки глаза. Способность нервных, мышечных и железистых клеток и тканей, а также рецепторных клеток быстро отвечать на раздражение изменениями своих физиологических свойств и возникновением возбуждения называется возбудимостью. Возбуждение - это волнообразный процесс, который проявляется в специфической ответной реакции ткани (мышечная - сокращается, железистая - выделяет секрет, нервная - генерирует электрический импульс) и неспецифической (изменение t, обмена веществ и др.)- Обязательным признаком возбуждения является изменение электрического заряда наружной оболочки или мембраны клетки. Минимальная сила раздражителя, необходимая для возникновения минимальной ответной реакции клетки и ткани, называется порогом раздражения. Он измеряется в различных физических величинах, которыми характеризуется величина раздражителя (в градусах, килограммах, децибеллах и т.д.). Минимальная сила раздражения, необходимая для возникновения возбуждения клетки и генерации потенциала действия, называется порогом возбуждения. Порог возбуждения измеряется в милли Вольтах. Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивный и активный избирательный перенос положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны клетки существует электрическая разность потенциалов - мембранный потенциал. Существует три отличающихся друг от друга проявления мембранного потенциала - мембранный потенциал покоя, местный потенциал и потенциал действия. Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя. Для внутренней среды клетки потенциал покоя всегда отрицателен и равен для нервной и поперечно-полосатой мышечной ткани от -50 до -100 мВ, для эпителиальной и гладкомышечной ткани от -20 до -30 Мв. Причиной возникновения потенциала покоя является разная концентрация катионов и анионов снаружи и внутри клетки и избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 20-100 раз больше катионов калия, в 5-15 раз меньше катионов натрия и в 20-100 раз меньше анионов хлора, чем внеклеточная жидкость. В мембране клетки имеются специфические натриевые, калиевые, хлорные и кальциевые каналы, которые избирательно пропускают, соответственно, только Na+, K+, Cl- и Са2+. Эти каналы обладают воротным механизмом и могут быть открытыми или закрытыми. В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых - открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они диффундируют через мембрану. Поскольку внутри клетки ионов К+ гораздо больше, то их выходит из клетки гораздо больше, что увеличивает положительный заряд наружной поверхности мембраны. Этот выходящий поток К+ должен был бы вскоре выровнять осмотическое давление (или концентрацию) этого иона, но этому препятствует электрическая сила отталкивания положительных ионов К+ от положительно заряженной наружной поверхности мембраны. Ионы К+ будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления K+. При таком уровне потенциала мембраны уравновесится выход и вход ионов К+ через мембрану клетки. Поскольку в состоянии покоя почти все натриевые каналы мембран закрыты, то ионы Na+ поступают в клетку в незначительном количестве и поэтому не могут возместить потерю положительного заряда внутренней среды клетки, вызванную выходом ионов К+. Избыток ионов Na+ на наружной поверхности мембраны совместно с выходящими из клетки ионами К+ создают положительный потенциал снаружи мембраны покоящейся клетки. В состоянии покоя мембрана нервных клеток проницаема несколько хуже, а мышечных клеток проницаемость несколько лучше для анионов Сl-, чем для катионов К+ Анионы Сl-, которых больше вне клетки, диффундируют внутрь клетки и несут с собой отрицательный заряд. Уравниванию концентраций ионов Cl- препятствует сила электрического отталкивания одноименных зарядов. Мембрана клетки практически непроницаема для крупных органических анионов, в частности молекул белков, анионов органических кислот. Поэтому они остаются внутри клетки и совместно с поступающими внутрь клетки ионами Cl- обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся клетки. При действии на клетку различных раздражителей по силе примерно в 1,5-2 раза меньше порога раздражения мембранный потенциал покоя начинает уменьшаться, т.е. происходит деполяризация мембраны клетки. С увеличением силы раздражения деполяризация мембраны нарастает. Однако, если сила раздражения не достигла порога, то прекращение раздражения приводит к быстрому восстановлению потенциала покоя. В мышечной и нервной тканях при пороговом раздражении уменьшение потенциала мембраны ограничено небольшим участком в месте нанесения раздражения и получило наз­вание местного потенциала или локального ответа. При достижении раздражения пороговой силы возникает быстрое кратковременное изменение величины и полярности заряда мембраны клетки, которое получило название потенциала действия (применя­ются также тещины "волна возбуждения", для нервных клеток -"нервный импульс"). Потенциалы действия всегда возникают при де­поляризации мембраны нервной и поперечно-полосатой мышечной кле­тки примерно до -50 мВ. Причиной возникновения местного потенциала, а затем и по­тенциала действия является раскрытие натриевых каналов и поступ­ление ионов Na+ внутрь клетки. При нарастании силы раздражения до пороговой этот процесс идет медленно и возникает местный по­тенциал. При достижении критического уровня деполяризации мемб­раны (примерно -50 мВ) проницаемость натриевых каналов мембраны лавинообразно возрастает. Ионы Na+ поступают внутрь клетки, что приводит не только к быстрой нейтрализации отрицательного заряда у внутренней поверхности мембраны, но и к возникновению положи­тельного заряда (инверсия потенциала).

Как только количество ионов Na+ снаружи и внутри клетки сравняется, направленный ток в клетку /^прекращается и инвер­сия заканчивается при величине примерно 430-40 мВ (рис. I).

Рис. I. Развитие потенциала действия в нерве:

УШ - уровень потенциала покоя;

МП - местный потенциал;

КУД -критический уровень деполяризации мембраны;

ПД - потенциал действия;

КУДИ - величина инверсии (овершут)

СДП - следовой деполяризационный потенциал;

СГП-следовой гиперполяризационный потенциал. К этому моменту резко увеличивается проницаемость мембраны для ионов К+ которые в большом количестве выходят из клетки. В ре­зультате у внутренней поверхности мембраны вновь создается отри­цательный заряд, а на наружной поверхности - положительный, т.е. происходит реполяризация мембраны. Быстрые изменения величины и полярности заряда мембраны получили название пика потенциала дей­ствия. Вслед за пиком потенциала действия наблюдаются деполяризационный и гиперполяризационный следовые потенциалы, обусловлен­ные инерционностью процессов движения ионов Na+ и К+ через клеточ­ную мембрану. Длительность потенциала действия составляет около I мс в нервах, 10 мс в скелетной мышце и более 200 мс в миокарде сердца.

Поддержание разности концентраций ионов Na+ и К+ между цито­плазмой клетки и внеклеточной жидкости в состоянии покоя и вос­становление этой разницы после раздражения клетки обеспечивается работой так называемого натрий-калиевого насоса мембраны. Натрий-калиевый насос осуществляет активный перенос ионов против градиентов их концентраций, непрерывно откачивая Na+ из клетки в об­мен на К+. Насос работает за счет энергии АТФ, в расщеплении ко­торой участвует фермент - мембранная Na, К АТФаза. Для работы насоса необходимо наличие в клетке ионов У Na+, а во внеклеточной жидкости - ионов К+. Распространение потенциала действия по ткани, в особенности нервного импульса по нервам, является самым быстрым и точно ад­ресованным способом передачи информации в организме. Скорость передачи нервного импульса в быстропроводящих волокнах двигате­льных нервов (тип Аα) достигает 120 м/с. Другие способы передачи информации гораздо медлительнее: гуморальный не превышает 0,5 м/с (скорость тока крови в аорте), аксонный транспорт веществ от тела нейрона к окончаниям аксона не превышает 40 см в сутки. Передача информации в организме путем проведения потенциа­лов действия осуществляется по мембране нервного волокна. При нанесении раздражения достаточной силы на нервное волокно в точке

 
раздражения возникает зона возбуждения (рис. 2). Эта зона имеет на внутренней поверхности мембраны положительный заряд, а на наружной -отрицательный. Соседние невозбужденные участки мембраны нервного волокна имеют обратное соотношение полярности зарядов. Между возбужденным и невозбужденными участками мембраны возникают электрические токи. Они получили название местных токов.

Эти токи раздражают соседние невозбужденные участки мембраны. В результате в них изменяется проницаемость ионных каналов, развивается деполяризация и возникает потенциал действия. Эти участки становятся возбужденными. Процесс повторяется и таким образом происходит распространение нервного импульса по нерву в обе стороны от первоначального места нанесения раздражения. Таков механизм проведения возбуждения по безмякотному нервному волокну, в котором оно проводится с небольшой скоростью, постепенно ослабевая. В мякотных нервных волокнах потенциалы действия возникают только в перехватах Ранвье, где нет миелиновой оболочки, являющейся электрическим изолятором. В результате возбуждение в мякотном нервном волокне передается скачками, от одного перехвата Ранвье к другому. Скорость передачи возбуждения в нем выше, чем в безмякотном волокне, и передается оно практически без ослабления.

 

48. Понятие о рецепторах, органах чувств, анализаторах и сенсорных системах. Организм человека и животных может нормально функционировать только при постоянном получении информации о состоянии и изменениях внешней среды, в которой он находится, а также о состоянии внутренней среды, всех частей тела. Без информации, поступающей в мозг, не могут осуществляться простые и сложные рефлексы вплоть до психической деятельности человека. Сложные акты поведения человека во внешней среде требуют постоянного анализа внешней ситуации, а также осведомленности нервных центров о состоянии внутренних органов. Специальные структуры нервной системы, обеспечивающие вход информации в мозг и анализ этой информации, И.П. Павлов назвал анализаторами. С помощью анализаторов осуществляется познание окружающего мира. При раздражении рецепторов в коре больших полушарий возникают ощущения, которые отражают отдельные свойства предметов и явлений. На основе ощущений формируются понятия и представления, отражающие взаимосвязи и зависимости между этими предметами и явлениями, делаются выводы и заключения, осуществляются адекватное поведение во внешней среде и практическая деятельность человека. Анализаторы при нормальном функционировании в пределах чувствительности своих рецепторов дают верное представление об окружающей действительности, что подтверждается практикой. Это дает возможность человеку познавать окружающий мир, достигать прогресса в областях знания, науки и техники. Информация, поступающая от различных рецепторов в центральную нервную систему, необходима для поддержания деятельного состояния ЦНС и всего организма в целом. Искусственное выключение большинства органов чувств в специальных экспериментах на животных приводило к резкому снижению тонуса коры и сонному состоянию животного. Разбудить его можно было только путем воздействия на невыключенные органы чувств. Специальные эксперименты на людях, помещенных в камеры, исключающие поступление зрительных, слуховых и других раздражений, показали, что резкое снижение поступления сенсорной информации отрицательно сказывается на способности концентрировать внимание, логически мыслить, выполнять умственные задачи. В ряде случаев появлялись зрительные и слуховые галлюцинации. Информация, передаваемая в ЦНС от рецепторов интероцептивного анализатора, расположенных во внутренних органах, служит основой процессов саморегуляции. Так, например, если изменяется давление крови, то в барорецепторах стенок сосудов возникает возбуждение. Оно передается в сосудодвигательный центр продолговатого мозга, импульсы от которого вызывают расширение сосудов и восстановление кровяного давления до нормальной величины. Помимо первичного сбора информации об окружающей среде и внутреннем состоянии организма важной функцией анализаторов является информирование нервных центров о результатах рефлекторной деятельности, т.е. осуществление обратных связей. Например, для точного выполнения ответной двигательной реакции на какое-либо раздражение ЦНС должна получать информацию от двигательного и вестибулярного анализаторов о силе и длительности выполняемых сокращений мышц, о скорости и точности перемещения тела, положении тела в пространстве, об изменениях темпа движений и т.д. Без этой информации невозможно формирование и совершенствование двигательных навыков, в том числе трудовых и спортивных. Восприятие любой информации о внешней и внутренней среде начинается с раздражения рецепторов. Рецептор - это нервное окончание или специализированная клетка, которая способна воспринимать раздражение и преобразовывать энергию раздражения в нервный импульс. Рецепторы подразделяют на экстерорецепторы, воспринимающие раздражения из внешней среды, и интерорецепторы, сигнализирующие о состоянии внутренних органов. Разновидностью интерорецепторов являются проприорецепторы, информирующие о состоянии и деятельности опорно-двигательного аппарата. В зависимости от характера раздражителей, к которым рецептор обладает избирательной чувствительностью, рецепторы подразделяют на несколько групп: механорецепторы. терморецепторы, фоторецепторы, хеморецепторы, электрорецепторы, болевые рецепторы. Трансформирование энергии раздражителя в процесс возбуждения, или нервный импульс, происходит за счет обмена веществ самих рецепторов. Раздражитель, действуя на рецептор, вызывает деполяризацию его мембраны и возникновение рецепторного, или генераторного потенциала, который сходен по своим свойствам с местным потенциалом. Когда рецепторный потенциал достигает величины критического потенциала, он вызывает возникновение афферентного импульса в нервном волокне, идущем от рецептора. Более широким понятием, чем рецептор, является понятие орган чувств, под которым понимают образование, включающее рецепторы, а также другие клетки и ткани, способствующие лучшему восприятию рецепторами какого-то определенного раздражения. Например, рецепторы зрения (фоторецепторы) - это палочки и колбочки сетчатки глаза. Вместе с преломляющей системой, оболочками, мышцами, кровеносными сосудами глазного яблока фоторецепторы составляют орган чувств — глаз. Однако для возникновения ощущения одного органа чувств недостаточно. Необходимо, чтобы возбуждение от органа чувств было передано по афферентным путям в ЦНС в соответствующие проекционные зоны в коре больших полушарий. Это было установлено русским ученым И.П. Павловым, который ввел в физиологию понятие анализатор, объединяющее все анатомические образования, в результате деятельности которых возникает ощущение. Анализатор состоит из периферического отдела (соответствующего органа чувств), проводникового отдела (афферентных проводящих путей) и коркового, или центрального, отдела (определенного участка в коре больших полушарий). Например, периферический отдел зрительного анализатора представлен глазом, проводниковый отдел - это зрительный нерв, корковый отдел - зрительная зона коры больших полушарий. Следует отметить, что в настоящее время в термин орган чувств часто вкладывают то же понятие, что и в анализатор. Дальнейшее изучение механизмов восприятия и анализа информации, а также реакции на нее организма привело к появлению более общего, чем анализатор, понятия сенсорные системы. Сенсорная система включает в себя не только сложную многоуровневую систему передачи информации от рецепторов к коре больших полушарий и анализа ее, что И.П. Павлов назвал анализатором, но и включает процессы синтеза различной информации в коре и регулирующие влияния коры к нижележащим нервным центрам и рецепторам. Сенсорные системы имеют сложную структуру. Возбуждение от рецепторов проводится в кору больших полушарий по так называемым специфическому и неспецифическому путям. Специфический путь включает в себя: I)рецептор; 2)первый чувствительный нейрон, расположенный всегда вне ЦНС в спинномозговых ганглиях или в ганглиях черепномозговых нервов; 3)второй нейрон, расположенный в спинном или продолговатом, или среднем мозге; 4)третий нейрон, находящийся в зрительных буграх промежуточного мозга; 5)четвертый нейрон, расположенный в проекционной зоне данного анализатора в коре больших полушарий. Со вторых нейронов специфического пути, т.е. в спинном, продолговатом и среднем мозге происходит также передача сенсорного возбуждения на пути в другие отделы головного мозга, в том числе в ретикулярную формацию. Из ретикулярной формации возбуждение может направляться по так называемым неспецифическим путям во все отделы коры больших полушарий. Анализаторам характерны следующие общие свойства. 1) Высокая чувствительность к адекватным раздражителям.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных