Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Начертите диаграмму железо-цементит, укажите структуры во всех областях диаграммы и значение всех критических точек и линий диаграммы.




Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое железо - металл серебристо-белого цвета; температура плавления 1539°С. Железо имеет две полиморфные модификации: α и γ. Модификация α существует при температурах ниже 911°С и выше 1392°С; γ-железо - при 911-1392°С.
В зависимости от температуры и концентрации углерода железоуглеродистые сплавы имеют следующие структурные составляющие.

1. Феррит (Ф) - твердый раствор внедрения углерода в α-железе. Растворимость углерода в α-железе при комнатной температуре до 0,005%; наибольшая растворимость - 0,02% при 727°С. Феррит имеет незначительную твердость (НВ 80-100) и прочность (σв=250 МПа), но высокую пластичность (δ=50%; φ=80%).

2. Аустенит (А) - твердый раствор внедрения углерода в γ-железе. В железоуглеродистых сплавах он может существовать только при высоких температурах. Предельная растворимость углерода в γ-железе 2,14% при температуре 1147°С и 0,8% - при 727°С. Эта температура является нижней границей устойчивого существования аустенита в железоуглеродистых сплавах. Аустенит имеет твердость НВ 160-200 и весьма пластичен (δ=40-50%).

3. Цементит (Ц) - химическое соединение железа с углеродом (карбид железа Fe3C). В цементите содержится 6,67% углерода. Температура плавления цементита около 1600°С. Он очень тверд (НВ~800), хрупок и практически не обладает пластичностью. Цементит неустойчив и в определенных условиях распадается, выделяя свободный углерод в виде графита по реакции Fe3C→3Fe+C.

4. Графит - это свободный углерод, мягок (НВ 3) и обладает низкой прочностью. В чугунах и графитизированной стали содержится в виде включений различных форм (пластинчатой, шаровидной и др.). С изменением формы графитовых включений меняются механические и технологические свойства сплава.

5. Перлит (П) - механическая смесь (эвтектоид, т. е. подобный эвтектике, но образующийся из твердой фазы) феррита и цементита, содержащая 0,8% углерода. Перлит может быть пластинчатым и зернистым (глобулярным), что зависит от формы цементита (пластинки или зерна) и определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет предел прочности σв=800 МПа; относительное удлинение δ=15%; твердость НВ 160. Перлит образуется следующим образом. Пластинка (глобуль) цементита начинает расти или от границы зерна аустенита, или центром кристаллизации является неметаллическое включение. При этом соседние области обедняются углеродом и в них образуется феррит. Этот процесс приводит к образованию зерна перлита, состоящего из параллельных пластинок или глобулей цементита и феррита. Чем грубее и крупнее выделения цементита, тем хуже механические свойства перлита.

6. Ледебурит (Л) - механическая смесь (эвтектика) аустенита и цементита, содержащая 4,3% углерода. Ледебурит образуется при затвердевании жидкого расплава при 1147°С. Ледебурит имеет твердость НВ 600-700 и большую хрупкость. Поскольку при температуре 727°С аустенит превращается в перлит, то это превращение охватывает и аустенит, входящий в состав ледебурита. Вследствие этого при температуре ниже 727°С ледебурит представляет собой уже не смесь аустенита с цементом, а смесь перлита с цементитом.
Помимо перечисленных структурных составляющих в железоуглеродистых сплавах могут быть нежелательные неметаллические включения: окислы, нитриды, сульфиды, фосфиды – соединения с кислородом, азотом, серой и фосфором. На их основе могут образовываться новые структурные составляющие, например фосфидная эвтектика (Fe+Fe3P+Fe3C) с температурой плавления 950°С. Она образуется при больших содержаниях фосфора в чугуне. При содержании фосфора около 0,5-0,7% фосфидная эвтектика в виде сплошной сетки выделяется по границам зерен и повышает хрупкость чугуна.
Диаграмма состояния железо - цементит. В диаграмме состояния железо – цементит (Fe-Fe3C) рассматриваются процессы кристаллизации железоуглеродистых сплавов (стали и чугуна) и превращения в их структурах при медленном охлаждении от жидкого расплава до комнатной температуры. Диаграмма (рис.1) показывает фазовый состав и структуру сплавов с концентрацией от чистого железа до цементита (6,67% С). Сплавы с содержанием углерода до 2,14% называют сталью, а от 2,14 до 6,67% - чугуном.
Диаграмма состояния Fe-Fe3C представлена в упрощенном виде. Первичная кристаллизация, т. е. затвердевание жидкого сплава начинается при температурах, соответствующих линии ликвидуса ACD. Точка А на этой диаграмме соответствует температуре 1539° плавления (затвердевания) железа, точка D – температуре ~1600°С плавления (затвердевания) цементита. Линия солидуса AECF соответствует температурам конца затвердевания. При температурах, соответствующих линии АС, из жидкого сплава кристаллизуется аустенит, а линии CD - цементит, называемый первичным цементитом. В точке С при 1147°С и содержании углерода 4,3% из жидкого сплава одновременно кристаллизуется аустенит и цементит (первичный), образуя эвтектику - ледебурит. При температурах, соответствующих линии солидуса АЕ, сплавы с содержанием углерода до 2,14% окончательно затвердевают с образованием аустенита. На линии солидуса ECF сплавы с содержанием углерода от 2,14 до 6,67% окончательно затвердевают с образованием эвтектики (ледебурита) и структур, образовавшихся ранее из жидкого сплава, а именно: в интервале 2,14-4,3% С - аустенита, а в интервале 4,3-6,67% С - цементита первичного (см. рис. 1).
В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14%, т. е. в сталях, образуется однофазная структура - аустенит. В сплавах с содержанием углерода более 2,14%, т. е. в чугунах, при первич ной кристаллизации образуется эвтектика ледебурита.


Рис. 1. Диаграмма состояния железо-цементит (в упрощенном виде):
А – аустенит, П – перлит, Л – ледебурит, Ф – феррит, Ц - цементит

 

Вторичная кристаллизация (превращение в твердом состоянии) происходит при температурах, соответствующих линиям GSE, PSK и GPQ. Превращения в твердом состоянии происходят вследствие перехода железа из одной аллотропической модификации в другую (γ в α) и в связи с изменением растворимости углерода в аустените и феррите. С понижением температуры растворимость уменьшается. Избыток углерода выделяется из твердых растворов в виде цементита.

В области диаграммы AGSE находится аустенит. При охлаждении сплавов аустенит распадается с выделением феррита при температурах, соответствующих линий GS, и цементита, называемого вторичным, при температурах, соответствующих линии SE. Вторичным называют цементит, выделяющийся из твердого раствора аустенита, в отличие от первичного цементита, выделяющегося из жидкого расплава. В области диаграммы GSP находится смесь феррита и распадающегося аустенита. Ниже линии GP существует только феррит. При дальнейшем охлаждении до температур, соответствующих линии PQ, из феррита выделяется цементит (третичный). Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02% при 727°С до 0,005% при комнатной температуре.

В точке S при содержании 0,8% углерода и температуре 727°С весь аустенит распадается и превращается в механическую смесь феррита и цементита - перлит. Сталь, содержащую 0,8% углерода, называют эвтектоидной. Стали, содержащие от 0,02 до 0,8% углерода, называют доэвтектоидными, а от 0,8 до 2,14% углерода -заэвтектоидными.

При температурах, соответствующих линии PSK, происходит распад аустенита, оставшегося в любом сплаве системы, с образованием перлита, представляющего собой механическую смесь феррита и цементита. Линию PSK называют линией перлитного превращения.

При температурах, соответствующих линии SE, аустенит насыщен углеродом, и при понижении температуры из него выделяется избыточный углерод в виде цементита (вторичного).
Вертикаль DFKL означает, что цементит имеет неизменный химический состав. Меняется лишь форма и размер его кристаллов, что существенно отражается на свойствах сплавов. Самые крупные кристаллы цементита образуются, когда он выделяется при первичной кристаллизации из жидкости.
Белый чугун, содержащий 4,3% углерода, называют эвтектическим (рис. 20). Белые чугуны, содержащие от 2,14 до 4,3% углерода, называют доэвтектическими, а от 4,3 до 6,67% углерода - заэвтектическими.

По достижении температуры 727°С (линия PSK) аустенит, обедненный углеродом до эвтектоидного состава (0,8% углерода), превращается в перлит. После окончательного охлаждения доэвтектические белые чугуны состоят из перлита, ледебурита (перлит+цементит) и цементита (вторичного). Чем больше в структуре такого чугуна углерода, тем меньше в нем перлита и больше ледебурита.

Белый эвтектический чугун (4,3% углерода) при температурах ниже 727°С состоит только из ледебурита. Белый заэвтектический чугун, содержащий более 4,3% углерода, после окончательного охлаждения состоит из цементита (первичного) и ледебурита. Следует отметить, что при охлаждении ледебурита ниже линии PSK входящий в него аустенит превращается в перлит, т. е. ледебурит при комнатной температуре представляет собой уже смесь цементита и перлита. При этом цементит образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита является причиной его большой твердости (НВ>600) и хрупкости.

Диаграмма состояния железо-цементит имеет большое практическое значение. Ее применяют для определения тепловых режимов термической обработки и горячей обработки давлением (ковка, горячая штамповка, прокатка) железоуглеродистых сплавов. Ее используют также в литейном производстве для определения температуры плавления, чтo необходимо для назначения режима заливки жидкого железоуглеродистого сплава в литейные формы.

 

 

93. Опишите нержавеющие хромистые стали. Укажите их марки, состав, цель термической обработки и область применения.

Углеродистые и низколегированные стали практически беззащитны против коррозии в атмосфере, в воде и большинстве других сред. Они покрываются пленкой окислов, которая не обладает достаточной плотностью и герметичностью для защиты стали от химического воздействия окружающей среды. Вместе с тем, известно, что некоторые легирующие элементы повышают устойчивость стали против коррозии. К таким элементам в первую очередь относятся хром и никель.

При добавлении к стали хрома менее 12 % ее коррозионная стойкость не повышается: она остается на уровне обыкновенных углеродистых сталей. Однако введение в сталь хрома в количестве более 12 % делает ее стойкой к коррозии в атмосфере и в большинстве других промышленных средах. Стали с содержанием хрома более 12 % называют коррозионностойкими или, как часто их называют, нержавеющими.

Три типа хромистых нержавеющих сталей

Применяют три типа хромистых сталей: с номинальным содержанием хрома 13, 17 и 25-28 %. Состав основных химических элементов хромистых сталей по ГОСТ 5632-72 представлен в таблице 1.

Таблица 1 — Состав основных химических элементов хромистых коррозионностойких сталей по ГОСТ 5632-72

Хромистые стали в зависимости от содержания углерода могут относиться к различным структурным классам: ферритному, мартенситному и смешанному — феррито-мартенситному. Принадлежность к тому или иному классу определяется диаграммой тройной системы железо-углерод-хром.

Стали с номинальным содержанием хрома 17, 25 и 28 % – 12Х17, 08Х17Т, 15Х25Т и 15Х28 – относятся к сталям ферритного класса. Их структурой является феррит и они не имеют фазовых превращений.

У сталей с содержанием хрома 12-14 % все немного сложнее. Они нестабильны по свойствам и небольшие отклонения в химическом составе переводят сталь из одного класса в другой. Так, сталь 08Х13 при минимальном содержании углерода и максимальном хрома является ферритной, а при минимальном содержании хрома имеет гамма-альфа превращение.

Охлаждение сталей 20Х13, 30Х13 и 40Х13 на воздухе приводит к образованию в них мартенсита. Твердость мартенсита повышается с увеличением содержания углерода, а также температуры нагрева под закалку, от которой зависит степень растворения карбидов в аустените.

Термическая обработка хромистых нержавеющих сталей

Термическая обработка хромистых сталей может быть различной в зависимости от преследуемой цели, класса стали и ее химического состава. Обычно применяемые режимы термической обработки хромистых нержавеющих сталей представлены в таблице 2.

 

Таблица 2 — Типичные режимы термической обработки хромистых нержавеющих сталей и их механические свойства

 

Стали типа Х13

Стали с 13 % хрома — 08Х13, 12Х13, 20Х13, 30Х13 и 40Х13 — являются наиболее распространенными и дешевыми нержавеющими сталями. Их применяют и для кухонной утвари, и в технике. Стали с низким содержанием углерода 08Х13 и 12Х13 имеют высокую пластичность и из них штампуют различные детали. Стали 20Х13, 30Х13 и 40Х13 имеют высокую твердость и повышенную прочность — из них изготавливают детали повышенной прочности и износоустойчивости при высокой коррозионной стойкости. Из них изготавливают различный инструмент, в том числе, хирургический, а также подшипники, пружины и другие детали для работы в активной коррозионной среде.

Стали типа Х17

Стали с 17 % — 12Х17, 08Х17Т и 14Х17Н2 — хрома обладают более высокой коррозионной стойкостью. Благодаря более высокому содержанию хрома эти стали применяют и как жаростойкие (окалиностойкие) при рабочих температурах до 900 °С.

Стали типа Х25-Х28

Стали 15Х25Т и 15Х28 применяют для деталей печей, например, муфелей и чехлов термопар, для работы при температурах от 1050 до 1150 °С.

Проблемы ферритных нержавеющих сталей

Большим недостатком нержавеющих сталей ферритного класса является их склонность к крупнозернистости при перегреве, которая не устраняется термической обработкой — эти стали не имеют фазовых превращений. Крупнозернистость создает повышенную хрупкость стали с переходом порога хладноломкости в область положительных температур.

 

139. Выберите и обоснуйте выбор марки сплавов для следующих деталей: а) рессоры; б) выпускного клапана двигателя внутреннего сгорания; в) нагруженной детали из алюминиевого сплава.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных