Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Механизм сохранения информации в кэш-памяти




При включении микропроцессора в работу вся информация в его кэш-памяти недостоверна.

При обращении к памяти микропроцессор, как уже отмечалось, сначала проверяет, не содержится ли искомая информация в кэш-памяти.

Для этого сформированный им физический адрес сравнивается с адресами ячеек памяти, которые были ранее кэшированы из ОЗУ в КП.

При первом обращении такой информации в кэш -памяти, естественно, нет, и это соответствует кэш-промаху. Тогда микропроцессор проводит обращение к оперативной памяти, извлекает нужную информацию, использует ее в своей работе, но одновременно записывает эту информацию в кэш.

Если бы в кэш - память заносилась только востребованная микропроцессором в данный момент информация, то, скорее всего, при следующем обращении вновь произошел бы кэш-промах: вряд ли следующее обращение произойдет к той же самой команде или к тому же самому операнду. Кэш-попадания происходили бы лишь после того, как в КП накопится достаточно большой фрагмент программы, содержащий некоторые циклические участки кода, или фрагмент данных, подлежащих повторной обработке. Для того чтобы уже следующее обращение к КП приводило как можно чаще к кэш-попаданиям, передача из оперативной памяти в кэш - память происходит не теми порциями (байтами или словами), которые востребованы микропроцессором в данном обращении, а так называемыми строками. То есть кэш - память и оперативная память с точки зрения кэширования организуются в виде строк. Длина строки превышает максимально возможную длину востребованных микропроцессором данных. Обычно она составляет от 16 до 64 байт и выровнена в памяти по границе соответствующего раздела (рис. 4.1).


Рис. 4.1. Организация обмена между оперативной и кэш-памятью

Высокий процент кэш-попаданий в этом случае обеспечивается благодаря тому, что в большинстве случаев программы обращаются к ячейкам памяти, расположенным вблизи от ранее использованных. Это свойство, называемое принципом локальности ссылок, обеспечивает эффективность использования КП. Оно подразумевает, что при исполнении программы в течение некоторого относительно малого интервала времени происходит обращение к памяти в пределах ограниченного диапазона адресов (как по коду программы, так и по данным).

Например, микропроцессору для своей работы потребовалось 2 байта информации. Если строка имеет длину 16 байт, то в кэш переписываются не только нужные 2 байта, но и некоторое их окружение. Когда микропроцессор обращается за новой информацией, в силу локальности ссылок, скорее всего, обращение произойдет по соседнему адресу. Затем опять по соседнему, опять по соседнему и т. д. Таким образом, ряд следующих обращений будет происходить непосредственно к кэш -памяти, минуя оперативную память (кэш-попадания). Когда очередной сформированный микропроцессором физический адрес выйдет за пределы строки кэш -памяти (произойдет кэш-промах), будет выполнена подкачка в кэш новой строки, и вновь ряд последующих обращений вызовет кэш-попадания.

Чем длиннее используемая при обмене между оперативной и кэшпамятью строка, тем больше вероятность того, что следующее обращение произойдет в пределах этой строки. Но в то же время чем длиннее строка, тем дольше она будет перекачиваться из оперативной памяти в кэш. И если очередная команда окажется командой перехода или выборка данных начнется из нового массива, то есть следующее обращение произойдет не по соседнему адресу, то время, затраченное на передачу длинной строки, будет использовано напрасно. Поэтому при выборе длины строки должен быть разумный компромисс между соотношением времени обращения к оперативной и кэш -памяти и вероятностью достаточно удаленного перехода от текущего адреса при выполнении программы. Обычно длина строки определяется в результате моделирования аппаратно-программной структуры системы.

После того как в КП накопится достаточно большой объем информации, увеличивается вероятность того, что формирование очередного адреса приведет к кэш-попаданию. Особенно велика вероятность этого при выполнении циклических участков программы.

Старая информация по возможности сохраняется в кэш -памяти. Ее замена на новую определяется емкостью, организацией и стратегией обновления кэша.

Типы кэш-памяти

Если каждая строка ОЗУ имеет только одно фиксированное место, на котором она может находиться в кэш -памяти, то такая кэш - память называется памятью с прямым отображением.

Предположим, что ОЗУ состоит из 1000 строк с номерами от 0 до 999, а кэш - память имеет емкость только 100 строк. В кэш -памяти с прямым отображением строки ОЗУ с номерами 0, 100, 200,..., 900 могут сохраняться только в строке 0 КП и нигде иначе, строки 1, 101, 201, …, 901

ОЗУ - в строке 1 КП, строки ОЗУ с номерами 99, 199, …, 999 сохраняются в строке 99 кэш -памяти (рис. 4.2). Такая организация кэш -памяти обеспечивает быстрый поиск в ней нужной информации: необходимо проверить ее наличие только в одном месте. Однако емкость КП при этом используется не в полной мере: несмотря на то, что часть кэш -памяти может быть не заполнена, будет происходить вытеснение из нее полезной информации при последовательных обращениях, например, к строкам 101, 301, 101 ОЗУ.


Рис. 4.2. Принцип организации кэш-памяти с прямым отображением

Кэш - память называется полностью ассоциативной, если каждая строка ОЗУ может располагаться в любом месте кэш -памяти.

В полностью ассоциативной кэш -памяти максимально используется весь ее объем: вытеснение сохраненной в КП информации проводится лишь после ее полного заполнения. Однако поиск в кэш -памяти, организованной подобным образом, представляет собой трудную задачу.

Компромиссом между этими двумя способами организации кэш -памяти служит множественно-ассоциативная КП, в которой каждая строка ОЗУ может находиться по ограниченному множеству мест в кэш -памяти.

При необходимости замещения информации в кэш -памяти на новую используется несколько стратегий замещения. Наиболее известными среди них являются:

1. LRU - замещается строка, к которой дольше всего не было обращений;

2. FIFO - замещается самая давняя по пребыванию в кэш-памяти строка;

3. Random - замещение проходит случайным образом.

Последний вариант, существенно экономя аппаратные средства по сравнению с другими подходами, в ряде случаев обеспечивает и более эффективное использование кэш -памяти. Предположим, например, что КП имеет объем 4 строки, а некоторый циклический участок программы имеет длину 5 строк. В этом случае при стратегиях LRU и FIFO кэш - память окажется фактически бесполезной ввиду отсутствия кэш -попаданий. В то же время при использовании стратегии случайного замещения информации часть обращений к КП приведет к кэш -попаданиям.

Некоторые эвристические оценки вероятности кэш -промаха при разных стратегиях замещения (в процентах) представлены в табл. 4.1.

Таблица 4.1. Вероятность кэш-промаха для различной кэш-памяти  
Размер кэша,Кбайт Организация кэш-памяти  
2-канальная ассоциативная 4-канальная ассоциативная 8-канальная ассоциативная  
LRU Random LRU Random LRU Random  
  5.2 5.7 4.7 5.3 4.4 5.0  
  1.9 2.0 1.5 1.7 1.4 1.5  
  1.15 1.17 1.13 1.13 1.12 1.12  

Анализ таблицы показывает, что:

· увеличением емкости кэша, естественно, уменьшается вероятность кэш-промаха, но даже при незначительной на сегодняшний день емкости кэш-памяти в 16 Кбайт около 95 % обращений происходят к КП, минуя оперативную память;

· чем больше степень ассоциативности кэш-памяти, тем больше вероятность кэш-попадания за счет более полного заполнения КП (время поиска информации в КП в данном анализе не учитывается);

· механизм LRU обеспечивает более высокую вероятность кэш-попадания по сравнению с механизмом случайного замещенияRandom, однако этот выигрыш не очень значителен.

Соответствие между данными в оперативной памяти и в кэш -памяти обеспечивается внесением изменений в те области ОЗУ, для которых данные в кэш -памяти подверглись изменениям. Существует два основных способа реализации этих действий: со сквозной записью (writethrough) и с обратной записью (write-back).

При считывании оба способа работают идентично. При записи кэширование со сквозной записью обновляет основную память параллельно с обновлением информации в КП. Это несколько снижает быстродействие системы, так как микропроцессор впоследствии может вновь обратиться по этому же адресу для записи информации, и предыдущая пересылка строки кэш -памяти в ОЗУ окажется бесполезной. Однако при таком подходе содержимое соответствующих друг другу строк ОЗУ и КП всегда идентично. Это играет большую роль в мультипроцессорных системах с общей оперативной памятью.

Кэширование с обратной записью модифицирует строку ОЗУ лишь при вытеснении строки кэш -памяти, например, в случае необходимости освобождения места для записи новой строки из ОЗУ в уже заполненную КП. Операции обратной записи также инициируются механизмом поддержания согласованности кэш -памяти при работе мультипроцессорной системы с общей оперативной памятью.

Промежуточное положение между этими подходами занимает способ, при котором все строки, предназначенные для передачи из КП в ОЗУ, предварительно накапливаются в некотором буфере. Передача осуществляется либо при вытеснении строки, как в случае кэширования с обратной записью, либо при необходимости согласования кэш -памяти нескольких микропроцессоров в мультипроцессорной системе, либо при заполнении буфера. Такая передача проводится в пакетном режиме, что более эффективно, чем передача отдельной строки.

Запоминающее устройство с произвольным обращением, как правило, содержит множество одинаковых запоминающих элементов, образующих запоминающий массив (ЗМ). Массив разделен на отдельные ячейки; каждая из них предназначена для хранения двоичного кода, число разрядов в котором определяется шириной выборки памяти (в частности, это может быть одно, половина или несколько машинных слов). Способ организации памяти зависит от методов размещения и поиска информации в запоминающем массиве. По этому признаку различают адресную, ассоциативную и стековую (магазинную) памяти.

Адресная память. В памяти с адресной организацией размещение и поиск информации в ЗМ основаны на использовании адреса хранения слова (числа, команды и т. п.). Адресом служит номер ячейки ЗМ, в которой это слово размещается.

При записи (или считывании) слова в ЗМ инициирующая эту операцию команда должна указывать адрес (номер ячейки), по которому производится запись (считывание).

Типичная структура адресной памяти, содержит запоминающий массив из N-разрядных ячеек и его аппаратное обрамление, включающее в себя регистр адреса РгА, имеющий k (k» log N) разрядов, информационный регистр РгИ, блок адресной выборки БАВ, блок усилителей считывания БУС, блок разрядных усилителей-формирователей сигналов записи БУЗ и блок управления памятью БУП.

По коду адреса в РгА БАВ формирует в соответствующей ячейке памяти сигналы, позволяющие произвести в ячейке считывание или запись слова.

Цикл обращения к памяти инициируется поступлением в БУП извне сигнала Обращение. Общая часть цикла обращения включает в себя прием в РгА с шины адреса ША адреса обращения и прием в БУП и расшифровку управляющего сигнала Операция, указывающего вид запрашиваемой операции (считывание или запись).

Далее при считывании БАВ дешифрирует адрес, посылает сигналы считывания в заданную адресом ячейку ЗМ, при этом код записанного в ячейке слова считывается усилителями считывания БУС и передается в РгИ. Операция считывания завершается выдачей слова из РгИ на выходную информационную шину ШИВых.

При записи помимо выполнения указанной выше общей части цикла обращения производится прием записываемого слова с входной информационной шины ШИВх и РгИ. Затем в выбранную БАВ ячейку записывается слово из РгИ.

Блок управления БУП генерирует необходимые последовательности управляющих сигналов, инициирующих работу отдельных узлов памяти.

 


Стековая память, так же как и ассоциативная, является безадресной. Стековую память можно рассматривать как совокупность ячеек, образующих одномерный массив, в котором соседние ячейки связаны друг с другом разрядными цепями передачи слов. Запись нового слова производится в верхнюю ячейку (ячейку 0), при этом все ранее записанные слова (включая слово, находившееся в ячейке 0), сдвигаются вниз, в соседние ячейки с большими на 1 номерами. Считывание возможно только из верхней (нулевой) ячейки памяти, при этом, если производится считывание с удалением, все остальные слова в памяти сдвигаются вверх, в соседние ячейки с большими номерами. В этой памяти порядок считывания слов соответствует правилу: последним поступил — первым обслуживается. В ряде устройств рассматриваемого типа предусматривается также операция простого считывания слова из нулевой ячейки (без его удаления и сдвига слова в памяти). Иногда стековая память снабжается счетчиком стека СчСт, показывающим количество занесенных в память слов. Сигнал СчСт = 0 соответствует пустому стеку, СчСт = N - 1 — заполненному стеку.

Обычно стековую память организуют, используя адресную память. В этом случае счетчик стека, как правило, отсутствует, так как количество слов в памяти можно выявить по указателю стека. Широкое применение стековая память находит при обработке вложенных структур данных, при выполнении безадресных команд и прерываний.

Практика

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных