Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






2 страница. Існують різні класифікації грибів, в основу яких покладено їх природну ознаку - будову органів плодоносіння




Існують різні класифікації грибів, в основу яких покладено їх природну ознаку - будову органів плодоносіння, характер плодових тіл, їх форму, величину, морфологічні особливості.

Виділяють нижчі та вищі гриби. До нижчих належать хітридіоміцети, ооміцети, зигоміцети. До вищих - аскоміцети, базидіоміцети та дейтероміцети.

Нижчі гриби непатогенні для людини. Однак окремі види мукорової плісняви (рис. 2.53) рідко уражають шкіру, очі, зовнішні слухові проходи, легені, мозкові оболонки, шлунково-кишковий тракт, здатні викликати алергію, професійні оніхомікози та пароніхії у людей, які збирають і обробляють апельсини. Захворювання називаються зигомікозами.

Патогенними для людини є представники родів Aspergillus (рис. 2.54),(рис. 2.55), Penicillium (рис. 2.56),(рис. 2.57), які викликають відповідно аспергільози та пеніциліози шкіри і внутрішніх органів зовнішніх слухових проходів, а також алергічні реакції.

Велике значення в медичній практиці мають гриби роду Candida (рис. 2.58),(рис. 2.59). Вони часто є представниками нормальної мікрофлори організму людини. Але при важких хронічних захворюваннях, імунодефіцитах, злоякісних новоутвореннях, нераціональному застосуванні антибіотиків, гіповітамінозах та авітамінозах здатні викликати серйозні захворювання - кандидомікози (рис. 2.60). Молочниця у новонароджених дітей, заїди в осіб будь-якого віку, системні кандидози з ураженням шкіри, органів дихальної системи та шлунково-кишкового тракту із смертельними випадками - все це спектр дії одних і тих же дріжджоподібних грибів Candida.

13. Темнопольна мікроскопія -У звичайному мікроскопі обєкт досліджують при світлі, яке проходить, у темнопольному  при боковому освітленні. Для мікроскопії в темному полі використовують замість конденсора Аббе спеціальний параболоїд-конденсор (кардіоїд-конденсор), у якому бокова поверхня дзеркальна а центральна частина нижньої лінзи затемнена, в результаті чого утворюється темне поле зору. Мікроскопію в темному полі зору використовують для дослідження рухливості бактерій, виявлення збудників сифілісу, лептоспірозу, поворотного тифу

Електронна мікроскопія. Для вивчення будови мікроорганізмів на субклітинному і молекулярному рівнях, а також для дослідження структури і архітектоніки вірусів використовують електронний мікроскоп. Це високовольтний вакуумний прилад, у якому збільшене зображення отримують за допомогою потоку електронів. Він має високу роздільну здатність і може давати збільшення від 20 тис до 5 млн разів. За принципом дії розрізняють просвічуючі (трансмісивні), скануючі (растрові) й комбіновані електронні мікроскопи.

Електронна мікроскопія вимагає спеціальної підготовки обєктів дослідження. Необхідна спеціальна фіксація тканин або бактерій, їх ретельне зневоднення, заливка в епоксидні смоли, виготовлення ультратонких зрізів. Для підвищення чіткості зображення використовують методи позитивного й негативного контрастування та відтінення.

Обєктиви поділяються на сухі (х8, х40) та імерсійні (х90 х120). Сухими називають такі обєктиви, між фронтальною лінзою яких і предметним склом знаходиться повітря. При цьому, в звязку з різницею показників заломлення скла й повітря (відповідно 1,52 і 1,0), частина світлових променів не потрапляє в око мікроскопіста. Імерсійними називають такі обєктиви, між фронтальною лінзою яких і досліджуваним обєктом знаходиться кедрова, персикова олія чи "імерсіол", коефіцієнт заломлення світла яких такий самий, як і в скла. При дослідженні морфології мікроорганізмів користуються переважно імерсійними обєктивами, які часто називають імерсійною системою.

14. Люмінесцентна мікроскопіяо станнім часом широко використовується в мікробіологічних дослідженнях.Цей метод дозволяє спостерігати первинну або вторинну люмінесценцію (світіння) мікроорганізмів, клітин, тканин та окремих їх структур. Зображення в люмінесцентному мікроскопі виникає із-за світіння самого препарату, яке виникає при освітленні його короткохвильовою частиною спектра. Метод оснований на використанні явища флуоресценції.Так як більшість хвороботворних мікробів не мають первинної (власної) люмінесценції, їх спочатку обробляють слабкими розчинами спеціальних барвників (флуорохромів), які зв’язуються певними структурами живих бактерій, не завдаючи їм шкоди. Найчастіше застосовують такі флуорохроми: акридиновий оранжевий, аурамін, корифосфін, ізотіоціанат флуоресцеїну, трипафлавін та ін.

Промені світла від сильного джерела, наприклад, ртутної лампи надмірного тиску, пропускають через синьо-фіолетовий світлофільтр. Під дією такого опромінення забарвлені флуорохромом бактерії починають світитися червоним, зеленим, жовтим або іншим світлом. Так, при забарвленні дифтерійних паличок корифосфіном вони набувають жовто-зеленого світіння, а при обробці аурамін-родаміном збудник туберкульозу світиться золотаво-оранжевим кольором.

Метод люмінесцентної мікроскопії набагато чутливіший порівняно з іншими мікроскопічними дослідженнями. Він дозволяє виявити таку малу кількість збудника, яку іншими методами не знаходять. За характером люмінесценції можна диференціювати окремі хімічні речовини, що входять до складу мікробних клітин. Використання люмінесцентного мікроскопа має ряд переваг: кольорове зображення, висока контрастність, можливість досліджувати як живі, так і вбиті мікроорганізми.

Люмінесцентну мікроскопію широко застосовують для виявлення антигенів і антитіл (метод імунофлуоресценції).За її допомогою можна побачити мікроби, які містять певні антигени. Для їх виявлення необхідно мати специфічні люмінесцентні сироватки, які викликають флуоресценцію саме даного антигена. Цей метод успішно використовують для експрес-діагностики багатьох бактерійних і вірусних захворювань.

Бактеріі-сапрофіти живляться органічними рештками відмерлих рослин і тварин, продуктами харчування людини. Вони спричинюють гниття і бродіння (ферментацію) органічних речовин. Гниття - це розщеплення білків, жирів та інших азотовмісних сполук під дією гнильних бактерій. В результаті гниття виділяються азото- і сірковмісні сполуки, які мають неприємний запах. Цей процес у природі відіграє величезну роль, оскільки очищає поверхню Землі від трупів тварин та рослинних решток. Утворювані під час гниття отруйні речовини можуть викликати отруєння або навіть смерть людей і тварин.

У зв'язку з цим заборонено використовувати в їжу або на корм тваринам продукти, в яких є ознаки гниття (специфічний запах, зокрема). Щоб запобігти гниттю продуктів і зеленої маси, їх стерилізують, сушать, маринують, коптять, солять, заморожують, силосують тощо. Ці методи обробки знищують гнильні бактерії та їхні спори і (або) створюють такі умови, за яких бактерії не розмножуються.

Бродіння, або ферментація, - це анаеробне розщеплення вуглеводів під дією ферментів бактерій. Цей процес давно був відомий людям. Упродовж тисячоліть люди виготовляли вино, використовуючи спиртове бродіння, квасили плоди і овочі за допомогою молочнокислого бродіння тощо.

Бактерії-паразити (одна з форм симбіозу) живуть за рахунок живих організмів. Одні з них - хвороботворні і можуть спричинити захворювання тварин і людини (чуму, тиф, туберкульоз, перитоніт, менінгіт, ангіну, ботулізм, газову гангрену та ін.), інші є причиною хвороб рослин. Ці бактерії утворюють спори, які можуть зберігати здатність до зараження тривалий час (десятки років).

Деякі гетеротрофні бактерії в процесі еволюції виробили здатність до симбіозу (мутуалізму) з вищими рослинами. Це, наприклад, азот-фіксуючі бактерії, які живуть на коренях бобових рослин, - бульбочкові бактерії. Вони поглинають азот з ґрунту й повітря і перетворюють його на сполуки, доступні для використання бобовими рослинами, які, в свою чергу, постачають бактеріям вуглеводи та мінеральні солі. За один вегетаційний період бульбочкові бактерії накопичують до 100 кг азоту на 1 га. Це враховують під час складання планів сівозмін.

Автотрофні бактерії - це бактерії, що можуть синтезувати органічні речовини з неорганічних у результаті фотосинтезу (фототрофт) або хемосинтезу (хемопгрофні). До фототрофних належать пурпурові й зелені сіркобактерії, які синтезують складові частини свого тіла з мінеральних речовин і вуглекислого газу, а енергію використовують світлову.

Хемотрофні бактерії, або хемосинтетики, живляться за допомогою хемосинтезу, оскільки органічні речовини синтезуються з неорганічних за

рахунок енергії хімічних реакцій.

15. Ферменти - це біологічні каталізатори білкової природи. Мікробна клітка, подібно кліткам вищих організмів, оснащена досить активним ферментативним апаратом

Оксидоредуктази - каталізують реакції окислювання-відновлення.
Трансферази - каталізують реакції переносу різних груп від донора до акцептора.
Гідролази - каталізують розриті зв'язків у субстратах із приєднанням води.
Ліази - каталізують реакції розриву зв'язків у субстраті без приєднання води чи окислювання.
Ізомерази - каталізують перетворення в межах однієї молекули (внутрімолекулярні перебудови).
Лігази (синтетази) - каталізують приєднання двох молекул з використанням енергії фосфатних зв'язків.

ферменти бактерій підрозділяються на екзо- і ендоферменти.
Ендоферменти функціонують тільки усередині клітки. Вони каталізують реакції біосинтезу й енергетичного обміну.
Екзоферменти виділяються кліткою в середовищі та каталізують реакції гідролізу складних органічних сполук на більш прості, доступні для асиміляції мікробною кліткою.
До них відносяться гідролітичні ферменти, що грають винятково важливу роль у харчуванні мікроорганізмів.

При класифікації поживних середовищ по консистенціїпоживні середовища поділяють на щільні (тверді), напіврідкі і рідкі.
Прикласифікації поживних середовищ за складомвиділяють білкові, безбілкові і мінеральні середовища.
Прикласифікації поживних середовищ за походженнямсередовища поділяють на штучні та природні (природні). Идентификация бактерий по ферментативной активности. Наиболее часто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды. Для определения протеолитической активности микроорганизмы засевают в столбик желатина уколом. Через 3—5 дней посевы просматривают и отмечают характер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их определения служат специальные индикаторные бумажки, ко- торые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разложения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку. Для многих микроорганизмов таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов. Для выявления этого используют среды Гисса, содержащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом». Для обнаружения газообразования в жидкие среды опускают поплавки или используют полужидкие среды с 0,5% агара. Для того чтобы определить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН. Гидролиз мочевины определяют по выделению аммиака (лакмусовая бумажка) и подщелачиванию среды. При идентификации многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин — промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения. Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водорода. Для определения цитохромоксидазы применяют реактивы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N- диметил-р-фенилендиамина дигидро-хлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин. Для определения нитритов используют реактив Грисса: Появление красного окрашивания свидетельствует о наличии нитритов.

16. 1Аероби-використовують як кінцевий акцептор кисень:

-облігатні-парціальний тиск кисню 20%

-мікроаерофіли-парціальний тиск кисню 5%(молочнокислі,азот фіксуючі бактерії)

-капнеїчні крім кисню потребують ще 10% СО2(бруцельоз бичачого типу)

2Анаероби-використовують сульфати,карбонати,нітрати,пірувати

-факультативні-можуть використ. Кисень

-облігатні-гинуть в кисневих умовах

Суть процесу дихання бактерій полягає в перебігу біохімічних реакцій, у результаті яких утворюється АТФ, що є універсальним переносником хімічної енергії між взаємно протилежними процесами виділення і споживання енергії.

Таким чином, під терміном «дихання» мають на увазі окисню-вання органічних речовин клітини киснем, унаслідок чого утворюється кінцевий продукт — вуглекислий газ. Складніша справа з культивуванням анаеробних багатоклітинних організмів, оскільки для їх культивування часто необхідна специфічна мікрофлора, а також певні концентрації метаболітів. Застосовується, наприклад, при дослідженні паразитів людського організму.

Для культивування анаеробів застосовують особливі методи, сутність яких полягає у видаленні повітря або заміни його спеціалізованої газовою сумішшю (або інертними газами) в герметизованих термостатах - анаеростатах [7].

Іншим способом вирощування анаеробів (найчастіше мікроорганізмів) на поживних середовищах - додавання містять редукують речовини (глюкозу, муравьинокислого натрій тощо), що зменшують окислювально-відновний потенціал.

Метод Цейсслера застосовується для виділення чистих культур спороутворюючих анаеробів. Для цього роблять посів на середовище Кітт-Тароцці.

Метод Вейнберга використовується для отримання чистих культур облігатних анаеробів. Культури, вирощені на середовищі Кітт-Тароцці, переносять в цукровий бульйон

Метод Перетца - в розплавлений і охолоджений цукровий агар-агар вносять культуру бактерій і заливають під скло, поміщене на пробкових паличках (або фрагментах сірників) вчашку Петрі. Метод найменш надійний з усіх, але досить простий у застосуванні.

Метод Фортнера - посіви виробляють на чашку Петрі з потовщеним шаром середовища, розділеним навпіл вузькою канавкою, вирізаної в агарі. Одну половину засівають культуру аеробних бактерій, на іншу - анаеробних. Краї чашки заливають парафіном і інкубують в термостаті. Спочатку спостерігають зростання аеробної мікрофлори, а потім (після поглинання кисню) - зростання аеробної різко припиняється і починається ріст анаеробної.

17. Умови культивування бактерій

1. Оптимальне поживне середовище.

2. Оптимальна температура. 49

3. Аеробні або анаеробні умови

4. Термін культивування.

5. Оптимальна вологість.

6. Відсутність світла

Типи поживних середовищ

1. Прості (основні).

2. Елективні.

3. Селективні.

4. Диференціально-діагностичні.

5. Спеціальні. 6. Середовища накопичення.

7. Консервувальні

Прості поживні середовища Такі середовища ще називають універсальними. До них відносять м'ясопептонний агар, м'ясопептонний бульйон, пептонну воду. На таких середовищах росте більшість мікроорганізмів

Спеціальні поживні середовища Використовують для культивування певних видів мікроорганізмів, які на інших середовищах ростуть погано або зовсім не ростуть. Приклади: ЖСА, лужна пептонна вода

Елективні поживні середовища Застосовують для виділення та накопичення певних бактерій. Наприклад, середовище Рапопорт – елективне для сальмонел

Селективні поживні середовища Склад таких середовищ сприяє росту одних бактерій і пригніченню інших. Приклади: агар Плоскірєва, Левіна, ВСА С

ередовища накопичення

Рідкі поживні середовища, що використовуються для накопичення бактеріальної маси

Диференціально- діагностичні поживні середовища Використовують для того, щоб відрізнити один вид бактерій від іншого. Наприклад: середовища Хісса, цитратний агар Симонса, агар Ендо

Індикаторні поживні середовища Використовують для виявлення культур бактерій, ріст яких спричинює добре видиму зміну середовища. Наприклад, середовище Вільсона-Блера

Консервувальні середовища Основне призначення цих середовищ – первинний посів й транспортування патологічного матеріалу.

 

18. Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее, для посева уколом при- меняют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки. Первые предварительно из- готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка- пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за- крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют. При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной ма- териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры). Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

19. Виділення аеробних бактерійУ перший день дослідження в стерильний посуд (пробірка, колба, флакон) проводять забір патологічного матеріалу. Його вивчають за зовнішнім виглядом, консистенцією, кольором, запахом, готують мазок, фарбують і розглядають під мікроскопом.Посів проводять бактеріологічною петлею, ватно-марлевим тампоном, за допомогою шпателя за методом Дригальського (рис. 26, 27). Чашки закривають, перевертають догори дном, підписують спеціальним олівцем і ставлять у термостат при оптимальній температурі (37° С) на 18-48, а деколи й більше годин. Мета етапу - одержати ізольовані колонії мікроорганізмів

На другий день розглядають чашки і вивчають ізольовані колонії, що виросли на поверхні агару. Звертають увагу на величину, форму, колір, характер країв і поверхні колоній, їх консистенцію та інші ознаки. З підозрілих колоній готують мазки, фарбують за методом Грама для вивчення морфологічних та тинкторіальних властивостей, досліджують рухомість бактерій у “висячій” чи “роздавленій” краплі.Мета- одержання чистої культури

На третій день досліджують характер росту чистої культури мікроорганізмів і проводять її ідентифікацію

Виділення анаеробних мікроорганізмів

обов’язкове дотримання на всіх етапах дослідження анаеробіозу, використовуючи для цього трикомпонентну газову суміш (у певному співвідношенні азот, водень та вуглекислий газ) чи систему “Gas-Pack

На першому етапі (І день дослідження) вивчають макроскопічні особливості клінічного матеріалу, роблять мазок та фарбують його за методом Грама. Після цього його засівають на середовище Кітта-Тароцці та молоко. Середовища ставлять у термостат при температурі 37° С і культивують 1-3 доби (рис. 3.34).

На другому етапі вивчають прояви росту мікроорганізмів (помутніння, утворення осаду та газу на середовищі Кітта-Тароцці, пептонізація молока). Готують мазок, фарбують за методом Грама і проводять посів матеріалу за методами Вейнберга або Цейсслера для одержання ізольованих колоній.

Третій етап дослідження починається з вивчення морфологічних особливостей колоній, які виросли в чашках Петрі або трубках Віньяль-Вейона. Досліджуються їх форма, величина, колір, характер країв, рельєф колонії, консистенція тощо. З колоній готують мазки, фарбують їх за методом Грама. Після цього колонії відсівають у середовище Кітта-Тароцці для одержання чистої культури. Посіви інкубують певний час при оптимальній температурі.

На четвертому етапі звертають увагу на особливості росту чистої культури збудників на відповідних середовищах, перевіряють її на чистоту і проводять ідентифікацію. Ідентифікують виділені чисті культури анаеробних мікроорганізмів подібно до аеробних за морфологічними, культуральними, біохімічними та біологічними ознаками. Обов’язково використовують визначення токсигенних властивостей збудників у біологічниій пробі та реакції нейтралізації на лабораторних тваринах. У деяких випадках визначають антигенні властивості мікроорганізмів.

20. Методи культивування вірусів

В організмі чутливих лабораторних тварин

В 10-денних курячих ембріонах

В культурах клітин

- первинні(отримують шляхом трипсинізації шматочків тканин органів, дають 10 поколінь)

- напівперещеплювані(отримують з диплоїдних клітин, дають до 100 поколінь)

- перещеплювані(отримують з пухлинних клітин, дають необмежену кількість поколінь)

Індикація вірусів– це виявлення вірусів у досліджуваному матеріалі без встановлення їх належності до родини, роду, виду, сероваріанту

Методи індикації

Цитопатична дія віруса (ЦПД) – загальні дистрофічні зміни клітин або специфічні ураження у вигляді включень або багатоядерних клітин – синцитіїв або симпластів

Бляшкоутворення – бляшки – це осередки зруйнованих інфікованих вірусом клітин моношару, що заходиться під агаровим покриттям

Кольорова проба – використовують середовища Ігла або 199, які містять індикатор, який реагує на зміну рН середовища. При появі в клітині метаболітів середовище змінює забарвлення на жовте (інфіковані вірусом клітини – не метаболізують)

Реакція гемаглютинації (РГА) основана на спроможності деяких вірусів, що мають гемаглютинін в оболонці склеювати еритроцити

Реакція гемадсорбції (РГадс) – дозволяє виявити віруси, які містять гемаглютинін у клітинних культурах до розвитку ЦПД. На інфікованих вірусом клітинах спостерігається адсорбція еритроцитів

21. Ідентифікація вірусів – встановлення їх варіантної, видової, родової та родинної належності за допомогою діагностичних сироваток

В основі лежить постановка серологічних реакцій

22. Влияние физических факторов. Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при высокой — термофилами. 18 К психрофильным микроорганизмам относится большая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий. Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С. При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250—300 °С и давлении 262 атм. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы. Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном со- стоянии, в том числе при температуре жидкого газа (—173 °С). Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты. Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты дли- тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств. Действие излучения. Неионизирующее излучение — ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме- тов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ- излучения с длиной волны 200—450 нм. Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони- зирующих излучений, например Micrococcusradiodurans была выделена из ядерного реактора. Действие химических веществ. Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д. Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям. Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли, Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке. Дезинфекция — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

23. Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители. Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

24. Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований. За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, поэтому важной проблемой являлась систематизация этих препаратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общепринятой. В основу главной классификации антибиотиков положено их химическое строение. Наиболее важными классами синтетических антибиотиков являются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин). По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воз- действие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия. Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии. В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты. Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия. Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов. Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С. Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, про- исходящие в микробной клетке. В зависимости от механизма действия различают пять групп антибиотиков: 1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой группы характеризуются самой высокой избирательностью действия: они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма; 2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подобных препаратов являются полимиксины, полиены; 25 3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях; 4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК; 5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды. Источники антибиотиков. Основными продуцентами природных антибиотиков являются микроорганизмы, которые, находясь в своей естественной среде (в основном, в почве), синтезируют антибиотики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некоторые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили. Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали: • Актиномицеты(особенно стрептомицеты) — ветвящиеся бактерии. Они синтезируют большинство природных антибиотиков (80 %). • Плесневые грибы— синтезируют природные бета-лактамы (грибы рода Cephalosporiumи Penicillium)Hфузидиевую кислоту. • Типичные бактерии— например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием. Способы получения. Существует три основных способа получения антибиотиков: • биологическийсинтез (так получают природные антибиотики — натуральные продукты ферментации, когда в оптимальных условиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности); • биосинтезс последующими химическими модификациями(так создают полусинтетические антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например присоединяют определенные радикалы, в результате чего улучшаются противомикробные и фарма- кологические характеристики препарата; • химическийсинтез (так получают синтетические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных