Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Решение системы линейных уравнений матричным методом




Еще один, пользующийся большой популярностью метод. Этот способ или, как его еще называют, метод обратной матрицы называется так потому, что все решение сводится к простому матричному уравнению, для решения которого необходимо найти обратную матрицу. Для того, что бы расставить все точки над и, рассмотрим метод под микроскопом.

Алгоритм решения достаточно просто. Как и в методах Гаусса и Крамера первоначально надо проверить, имеет ли система уравнений решение по теореме Кронекера-Копелли. Затем для решения матричным методом необходимо ввести в рассмотрение матрицы-столбцы для неизвестных X и свободных членов B. Тогда систему линейных уравнений можно записать в матричной форме AX=B. Умножив это матричное уравнение на A-1, получим A-1AX= A-1B, откуда EX=X=A-1B. Следовательно, матрица-решение X легко находится как произведение A-1 и B.

Для большей ясности решим небольшой пример методом обратной матрицы:

21x1-45x2-3.5x3=10

12x1-16x2+21x3=-16

14x1+13x2-8x3=10

Определим совместность системы уравнений. По теореме Кронекера-Копелли для того, что бы система линейных алгебраических уравнений была совместна (имела решение), необходимо и достаточно, чтобы ранг основной матрицы

 

A=
  -45 3.5
  -16  
    -8

 

и ранг расширенной матрицы

B=
  -45 3.5  
  -16   -19
    -8  

 

были равны.
Так как rang|A|=3 равен rang|B|=3 и равен количеству неизвестных n=3, то система имеет единственное решение.

Для решения методом обратной матрицы необходимо ввести матричные обозначения

 

A=
  -45 3.5
  -16  
    -8
X=
X1
X2
X3
C=
 
-19
 
, то X=A-1C

 


Найдем обратную матрицу A-1. Как ее найти, показывать не будем. Воспользовавшись нашии онлайн калькулятором, вы сможете выбрать один из двух способов для ее нахождения. Она будет иметь вид.

 

A-1=
0.008 0.016 0.046
-0.02 0.011 0.021
-0.02 0.047 -0.011

 

Для нахождения матрицы X умножим обратную матрицу А-1 на матрицу С

 

0.008 0.016 0.046
-0.02 0.011 0.021
-0.02 0.047 -0.011
 
-19
 
=
0.227
-0.209
-1.194

 

Получили решение системы уравнений

X1=0.227
X2=-0.209
X3=-1.194

 

 

Правило Крамера.

 

Рассмотрим систему (2.3). Назовем главным определителем этой системы определитель , элементами которого являются коэффициенты при неизвестных:

.

 

Предположим сначала, что Умножим каждое уравнение системы (2.3) на алгебраические дополнения элементов j-го столбца

Сложив затем все уравнения, получим:

. (2.5)

Отметим, что .

(j-й столбец)

(Результат получен из разложения определителя по j-му столбцу). Такой определитель равен 0 при и равен при i = j. Правая часть равенства (2.5) представляет собой определитель , в котором вместо j-го столбца стоит столбец свободных членов системы (2.3). Назовем такой определитель . Рассматривая j = 1,2 ,…,n, получим систему, эквивалентную исходной: (2.6). Разделив все уравнения на , найдем единственное решение: .

Предположим теперь, что =0. Тогда система (2.6) примет вид: .

В этом случае, если все =0, система выглядит так: и имеет бесконечно много решений. Если же хотя бы один из система решений не имеет.

Таким образом, правило Крамера позволяет найти единственное решение системы (2.3) или сделать вывод о существовании бесконечного числа решений либо об их отсутствии:






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных