Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Решение системы линейных уравнений матричным методом.




Ма́тричный метод решения систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.

 

Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):

 

 

Тогда её можно переписать в матричной форме:

 

AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

 

 

Умножим это матричное уравнение слева на A - 1 — матрицу, обратную к матрице A:

Так как A − 1A = E (учитывая ассоциативность матричного произведения), получаем X = A - 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:

.

Для однородной системы линейных уравнений, т.е. когда вектор B = 0, действительно обратное правило: система AX = 0 имеет нетривиальное (т.е. ненулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма

 

№33

Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида.

Рассмотрим матрицу:

эта матрица называется расширенной матрицей системы (1), так как в нее кроме матрицы системы А, дополнительно включен столбец свободных членов.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных