Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Черные дыры: туннели сквозь пространство и время




 

Черные дыры с недавних пор завладели воображением широкой публики. Исследованию этого странного предположения Эйнштейна, финальной стадии смерти коллапсирующей звезды, посвящены книги и документальные фильмы. Парадокс, но публика по-прежнему не подозревает о самой, пожалуй, необычайной особенности черных дыр — что они могут служить воротами в другую вселенную. Более того, в научном сообществе активно высказываются предположения о способности черных дыр открывать туннели во времени.

Для того чтобы понять, что такое черные дыры и как трудно отыскать их, следует сначала выяснить, почему сияют звезды, как они растут и как в конце концов погибают. Звезда рождается, когда огромное облако водорода, размерами многократно превосходящее нашу Солнечную систему, медленно сжимается под действием силы гравитации. Эта сила, сжимающая газ, постепенно нагревает его, поскольку гравитационная энергия преобразуется в кинетическую энергию атомов водорода. В обычных условиях отталкивающего заряда протонов в водороде достаточно, чтобы атомы оставались обособленными. Но в определенный момент, когда температура повышается до 10–100 млн кельвинов, кинетическая энергия протонов (ядер водорода) преодолевает электростатическое отталкивание, и они врезаются друг в друга. Тогда сила ядерного взаимодействия одерживает верх над электромагнитной силой, и два ядра водорода «сливаются», образуя гелий и выделяя огромные количества энергии.

Другими словами, звезда — это ядерная печь, в которой сгорает топливо — водород и образуется ядерная «зола» — отходы в виде гелия. Кроме того, звезда — случай шаткого равновесия между силой гравитации, стремящейся полностью уничтожить звезду, и силой ядерного взаимодействия, обладающей мощностью триллионов водородных бомб, которая стремится разорвать звезду. Расходуя свое ядерное топливо, звезда достигает зрелости и старости.

Для того чтобы понять, как в ходе ядерной реакции выделяется энергия, и выяснить, какие жизненные этапы проходит звезда, прежде чем стать черной дырой, обратимся к рис. 10.1, на котором представлен один из наиболее важных графиков современной науки, иногда называемый кривой энергии связи. На горизонтальной оси отражена атомная масса различных элементов — от водорода до урана. На вертикальной оси — грубо говоря, приблизительный средний «вес» каждого протона в ядре. Обратите внимание: протоны водорода и урана в среднем тяжелее, чем протоны других элементов в центре графика.

 

 

Рис. 10.1. Средняя масса каждого протона менее тяжелых элементов, таких как водород и гелий, сравнительно велика. Таким образом, если в звезде из водорода получается гелий, остается избыток массы, который преобразуется в энергию соответственно формуле Эйнштейна E = mc2. Благодаря этой энергии светят звезды. Но по мере того, как в реакцию вступают все более и более тяжелые элементы, особенно когда дело доходит до железа, получать больше энергии уже не удается. Тогда звезда схлопывается с гигантским выбросом тепла, в итоге возникает сверхновая. Колоссальный взрыв разрывает звезду и «осеменяет» межзвездное пространство, в котором образуются новые звезды. После этого процесс начинается сначала, как в автомате для игры в пинбол.

 

Наше Солнце — обыкновенная желтая звезда, состоящая главным образом из водорода. Как и при Большом взрыве, в ней из водорода образуется гелий. Но, поскольку протоны водорода тяжелее протонов гелия, возникает избыток массы, который преобразуется в энергию в соответствии с формулой Эйнштейна E = mc2. Эта энергия и связывает ядра вместе. Кроме того, энергия высвобождается при образовании гелия из водорода. Вот почему солнце светит.

Но за миллиарды лет водород постепенно расходуется, в желтой звезде накапливается слишком много гелия, и ядерная печь прекращает работу. Когда это происходит, гравитация наконец одерживает верх и уничтожает звезду. При резком увеличении температуры звезда раскаляется достаточно, чтобы сжечь избыток гелия и преобразовать его в другие элементы, такие как литий и углерод. Обратим внимание, что энергия продолжает выделяться по мере снижения кривой в сторону более тяжелых элементов. Иными словами, горение гелия все еще возможно (точно так же обычная зола при определенных условиях может продолжать гореть). Несмотря на существенное уменьшение размера звезды, ее температура довольно высока, а внешняя оболочка значительно увеличивается в размерах. В сущности, когда наше Солнце исчерпает запасы водорода и начнет сжигать гелий, внешняя оболочка Солнца достигнет орбиты Марса. Возникнет так называемый красный гигант. Разумеется, это означает, что в процессе его возникновения Земля превратится в пар. Таким образом, кривая предсказывает окончательную участь Земли. Поскольку возраст нашего Солнца средний, т. е. ему примерно 5 млрд лет, пройдет еще 5 млрд лет, прежде чем оно поглотит Землю. (По иронии судьбы, Земля родилась из того же вихревого газового облака, из которого возникло наше Солнце. В настоящее время физики высказывают предположение, что Земля, созданная вместе с Солнцем, воссоединится с ним.)

И наконец, когда будет израсходован гелий, ядерная печь снова прекратит работу, и гравитация уничтожит звезду. Красный гигант сожмется и станет белым карликом — миниатюрной звездой, сократившейся примерно до размеров планеты Земля[112]. Белые карлики светят слабо, так как относятся к нижней части кривой, которой соответствует совсем небольшой избыток энергии согласно формуле E = mc2. Белый карлик сжигает то немногое, что остается на нижней части кривой.

Наше Солнце в конце концов превратится в белого карлика и на протяжении миллиардов лет будет медленно умирать, так как истощит все свои запасы ядерного топлива. В итоге оно станет темной, выгоревшей карликовой звездой. Однако считается, что если звезда обладает достаточной массой (в несколько раз превышающей массу нашего Солнца), то большинство элементов, содержащихся в белом карлике, будут по-прежнему участвовать в реакциях с образованием все более тяжелых элементов и со временем дело дойдет до железа. Излишки массы уже не будут давать энергии, ядерная печь прекратит работу. Гравитация вновь окажется сильнее и будет сжимать звезду, пока температура не увеличится сразу в тысячу раз, достигая триллионов градусов. В этот момент железное ядро сжимается, а наружная оболочка белого карлика разрушается, процесс сопровождается самым мощным в галактике выбросом энергии и образованием взрывающейся звезды — сверхновой. Всего одной сверхновой достаточно, чтобы на время затмить целую галактику со 100 млрд звезд.

После взрыва сверхновой мы обнаруживаем совершенно мертвую звезду — нейтронную звезду размером с Манхэттен. Плотность составляющих нейтронной звезды настолько велика, что, грубо говоря, нейтроны «трутся» друг о друга. Хотя нейтронные звезды почти невидимы, их можно обнаружить с помощью приборов. Вращаясь, они распространяют излучение, так что действуют как космические маяки. Мы видим их как мерцающие звезды, или пульсары. (Этот сценарий выглядит, как научная фантастика, тем не менее свыше 400 пульсаров было обнаружено с тех пор, как их открыли в 1967 г.)

Компьютерные вычисления показали, что большинство элементов, более тяжелых, чем железо, могут синтезироваться при температурах и давлении, характерных для сверхновой звезды. Когда звезда взрывается, в космический вакуум выбрасывается уйма «звездного мусора», состоящего из тяжелых элементов. Этот «мусор» в итоге смешивается с прочими газами, пока не накопится достаточное количество водорода, чтобы процесс гравитационного сжатия начался опять. Из газопылевых облаков, изобилующих тяжелыми элементами, рождаются звезды второго поколения. Некоторые из этих звезд (такие как наше Солнце) окружены планетами, содержащими тяжелые элементы.

Так разрешается давняя загадка космологии. Наши тела состоят из элементов, более тяжелых, чем железо, но наше Солнце не настолько горячее, чтобы создать такие элементы. Если Земля и атомы нашего тела возникли из того самого газового облака, откуда тогда в нашем теле взялись тяжелые элементы? Вывод однозначен: тяжелые элементы нашего тела были синтезированы в сверхновой звезде, которая взорвалась до появления нашего Солнца. Другими словами, некая безымянная сверхновая звезда взорвалась миллиарды лет назад, породив исходное газовое облако, из которого и образовалась наша Солнечная система.

Эволюцию звезды можно представить в виде автомата для игры в пинбол, как на рис. 10.1, имеющего форму кривой энергии связи. Шар начинает движение сверху, перескакивая от водорода к гелию, от более легких элементов к более тяжелым. При каждом его скачке по кривой появляется звезда другого типа. И наконец, шар достигает нижней части кривой, где находится железо, и в результате взрыва рождается сверхновая звезда. Затем звездное вещество опять собирается в новую звезду, богатую водородом, и процесс «игры в пинбол» возобновляется.

Отметим, однако, что существуют два способа движения шара вниз по кривой. Это движение может начаться с другой стороны кривой, с урана, и достигнуть дна единственным скачком, с расщеплением ядра урана. Поскольку средняя масса протонов таких продуктов деления, как цезий и криптон, меньше средней массы протонов урана, избыток массы преобразуется в энергию согласно формуле E = mc2. Это и есть источник энергии атомной бомбы.

Таким образом, кривая энергии связи не только объясняет рождение и смерть звезд и возникновение элементов, но и делает возможным существование водородной и атомной бомб! (Ученых часто спрашивают, можно ли создать ядерные бомбы помимо атомных и водородных. Как видно из кривой энергии связи, ответ на этот вопрос отрицательный. Отметим, что кривая исключает возможность создания кислородной или железной бомбы. Эти элементы расположены вблизи нижней части кривой, поэтому избытка массы не хватит для бомбы.

А упоминающиеся в прессе бомбы вроде нейтронной — это разновидности урановой и водородной бомб.)

Когда впервые слышишь историю жизни звезд, невольно относишься к ней скептически. Ведь никто же не мог прожить 10 млрд лет и стать свидетелем эволюции звезд. Но, поскольку звезд в небе бесчисленное множество, несложно увидеть звезды почти на всех этапах их эволюции. (К примеру, в 1987 г. сверхновая звезда, которую можно было наблюдать невооруженным глазом в южном полушарии, обеспечила нас множеством астрономических данных, соответствующих теоретическим предположениям о схлопывающемся карлике с железным ядром. Кроме того, остаток великолепной сверхновой звезды, которую наблюдали древнекитайские астрономы 4 июля 1054 г., в настоящее время идентицифирован как нейтронная звезда.)

Вдобавок наши компьютерные программы стали настолько точными, что мы в принципе можем численно прогнозировать порядок звездной эволюции. Когда-то у меня был сосед-аспирант, специализировавшийся на астрономии. Он неизменно уходил рано утром и возвращался поздно вечером. Перед уходом говорил, что ставит звезду в духовку, чтобы увидеть, как она растет. Поначалу я думал, что он шутит. Но, когда я стал расспрашивать его, он со всей серьезностью объяснил, что закладывает звезду в компьютер и весь день наблюдает за тем, как она эволюционирует. Поскольку уравнения термодинамики и термоядерных реакций хорошо известны, остается лишь задать определенную массу водорода и дождаться, когда компьютер представит эволюцию этого газа в численном виде. Таким способом можно убедиться, что наша теория звездной эволюции воспроизводит известные стадии жизни звезды, которые мы видим в телескопы.

 

Черные дыры

 

Если звезда в 10–50 раз превосходит размерами наше Солнце, тогда гравитация будет продолжать сжимать ее даже после превращения в нейтронную звезду. В отсутствие силы термоядерных реакций, противостоящей силе притяжения, ничто не может помешать окончательному схлопыванию звезды. В этот момент она становится пресловутой черной дырой.

Существование черных дыр в некотором смысле неизбежно. Как мы помним, звезда — это продукт взаимодействия двух космических сил: гравитации, которая стремится сжать звезду, и силы ядерных реакций, которая стремится взорвать звезду, как водородную бомбу. Все этапы истории существования звезды — следствие этого шаткого равновесия между гравитацией и ядерным взаимодействием. Рано или поздно, когда все ядерное топливо гигантской звезды наконец израсходуется и звезда превратится в скопление одних нейтронов, ничто, насколько нам известно, не сможет помешать воздействию мощной силы гравитации. В конце концов гравитация возобладает и уничтожит нейтронную звезду. Звезда завершила свой путь: она родилась, когда гравитация только начала сжимать газообразный водород в небе, создавая звезду, и умерла, когда ядерное топливо кончилось и гравитация вызвала схлопывание звезды.

Плотность черной дыры настолько велика, что свет, подобно ракете, запущенной с Земли, вынужден двигаться по ее орбите. Поскольку свет не в состоянии избежать воздействия гравитационного поля огромной мощности, схлопнувшаяся звезда по цвету становится черной. Так и принято давать определение черным дырам: это сколлапсировавшая звезда, от которой не может исходить свет.

Надо заметить, что у всех небесных тел есть так называемая скорость убегания. Это скорость, необходимая для полного преодоления гравитационного притяжения конкретного тела. К примеру, космический зонд должен развить скорость убегания 25 000 миль в час (40 000 км/ч), чтобы преодолеть гравитационное притяжение Земли и улететь в дальний космос. Такие космические зонды, как «Вояджер», который вышел в открытый космос и покинул Солнечную систему (увозя послание доброй воли к инопланетянам, которым он может повстречаться), развил скорость убегания нашего Солнца. (Мы дышим кислородом, так как атомам кислорода недостает скорости, чтобы преодолеть поле притяжения Земли. Оболочка Юпитера и других газовых гигантов состоит преимущественно из водорода, поскольку их скорость убегания достаточно велика, чтобы удержать изначальный водород ранней Солнечной системы. Таким образом, скорость убегания помогает объяснить эволюцию планет Солнечной системы за последние 5 млрд лет.)

В сущности, ньютонова теория гравитации дает точное соотношение между скоростью убегания и массой звезды. Чем тяжелее планета или звезда и чем меньше ее радиус, тем большая скорость убегания понадобится, чтобы преодолеть силу ее гравитационного притяжения. Еще в 1783 г. английский астроном Джон Мичелл воспользовался этими вычислениями, чтобы предположить, что супермассивная звезда может иметь скорость убегания, равную скорости света. Свет, излучаемый такой массивной звездой, не отдаляется от нее, а движется вокруг по орбите. Таким образом, стороннему наблюдателю эта звезда может показаться совершенно черной. Пользуясь всеми знаниями, имевшимися в XVIII в., Мичелл действительно вычислил массу такой черной дыры[113]. Увы, его теорию сочли бредовой и вскоре забыли. Тем не менее сегодня мы склонны считать, что черные дыры существуют, так как благодаря телескопам и другим приборам увидели в небе белых карликов и нейтронные звезды.

Объяснить, почему черные дыры черные, можно двумя способами. С точки зрения прохожего, сила, действующая между звездой и лучом света, настолько велика, что его траектория изогнута и представляет собой окружность. Можно также принять точку зрения Эйнштейна, согласно которой «кратчайшее расстояние между двумя точками — кривая». Искривление луча света до полной окружности означает, что и само пространство свернуто в круг. Такое возможно лишь в том случае, если черная дыра полностью сжала участок пространства-времени вокруг нее, поэтому луч света перемещается в гиперсфере. Этот участок пространства-времени теперь отделен от окружающего пространства-времени, а само пространство «разорвано».

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных