Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теоретические аспекты радиобиологии

9.

Альфа-частицы, бета-частицы, выброшенные из ядра, обладают значительной кинетической энергией и, воздействуя на вещество, с одной стороны производят его ионизацию, а с другой проникают на определенную глубину. Взаимодействуя с веществом, они теряют эту энергию, в основном, в результате упругих взаимодействий с ядрами атомов или электронами, отдавая им всю или часть своей энергии, вызывая ионизацию или возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту). Ионизация и проникновение на определенную глубину имеют принципиальное значение для оценки воздействия ионизирующего излучения на биологическую ткань различных видов излучений. Зная свойства различных видов излучений проникать через разные материалы, последние можно использовать как для защиты человека, так и некоторых объектов, приборов и т.д.

Результаты взаимодействия ионизирующего излучения с веществом зависят: от массы, заряда потока частиц и их энергий; от вида фотонов и их энергий; от типа и плотности вещества; от значения энергий внутримолекулярных сил облучаемого вещества.

Взаимодействие ионизирующего излучения с веществом зависит от соотношения масс и энергий частиц и может носить упругий или неупругий характер.

С учетом выше сказанного можно сделать некоторые выводы:

· заряженные частицы, проходящие через вещество, взаимодействуют как с орбитальными электронами атома, так и с его ядром;

· при взаимодействии с орбитальными электронами, энергия частиц растрачивается на ионизацию атомов, если она не менее 35 эВ и на возбуждение атомов (перевод электрона с ближней орбиты на более удаленную), если она менее 35 эВ;

· в процессе ионизации атома образуются заряженные частицы (свободные электроны), а атомы, потерявшие один или несколько электронов, превращаются в положительно заряженные ионы;

 

Наведённая радиоактивность — это радиоактивность веществ, возникающая под действием облучения их ионизирующим излучением, как правило нейтронами.

При облучении частицами (нейтронами, протонами, гамма-квантами) стабильные ядра могут превращаться в радиоактивные ядра с различным периодом полураспада, которые продолжают излучать длительное время после прекращения облучения. Особенно сильна радиоактивность, наведённая нейтронным облучением. Это объясняется следующими свойствами этих частиц.

Для того, чтобы вызвать ядерную реакцию с образованием радиоактивных ядер, гамма-кванты и заряженные частицы должны иметь большую энергию (не меньше нескольких МэВ). Однако, они взаимодействуют с электронными оболочками атомов намного интенсивнее, чем с ядрами, и быстро теряют при этом энергию. Поэтому, вероятность гамма-кванта или заряженной частицы вызвать ядерную реакцию ничтожно мала. Например, при бомбардировке бериллия альфа-частицами, лишь одна из нескольких тысяч или десятков тысяч (в зависимости от энергии альфа-частиц) вызывает (α, n)-реакцию, а для других веществ эта вероятность еще меньше.

Нейтроны же, наоборот, захватываются ядрами при любой энергии, более того, максимальна вероятность захвата именно нейтронов с низкой энергией. Поэтому, распространяясь в веществе, нейтрон может попадать в множество ядер последовательно, пока не будет захвачен очередным ядром, и вероятность захвата нейтрона практически равна единице.

Следует заметить, что поглощение нейтронов не обязательно ведет к появлению наведенной радиоактивности. Многие ядра захватывают нейтрон с образованием стабильных ядер, например бор-10 превращается в стабильный бор-11, лёгкий водород (протий) — в стабильный дейтерий. В таких случаях наведённая радиоактивность не возникает.

Процесс накопления в веществе радиоактивных изотопов под действием облучения называется активацией

+ ст 37 учебника

 

Теоретические аспекты радиобиологии

Первой количественной теорией является теория «точечного тепла» или «точечного нагрева» (Ф.Дессауэр-1922):

  • ионизирующее излучение обладает очень малой объемной плотностью по сравнению с другими излучениями
  • излучение обладает большой энергией, величина которой значительно превосходит энергию любой химической связи
  • облученный биологический объект состоит из относительно безразличных и весьма существенных для жизни микрообъемов и структур
  • в облучаемом объекте при поглощении относительно небольшой общей энергии в отдельных, случайных и редкорасположенных микрообъемах оставляются настолько большие порции энергии, что их можно сравнить с микролокальным нагреванием
  • так как распределение «точечного тепла» является чисто статистическим, то конечный эффект в клетке будет зависеть от случайных "попаданий" дискретных порций энергии в жизненно важные микрообъемы внутри клетки; с увеличением дозы увеличивается вероятность таких попаданий и наоборот.

Теория "мишени или попаданий" поставила во главу угла представления о прямом действии ионизирующего излучения на клетки (30-е годы).

Стохастическая (вероятностная) гипотеза является дальнейшим развитием теории прямого действия излучений. Выразителями этой точки зрения являлись О. Хуг и А. Келлерер (1966). Суть их взглядов заключалась в том, что взаимодействие излучений с клеткой происходит по принципу вероятности (случайности) и что зависимость "доза-эффект" обуславливается не только прямым попаданием в молекулы и структуры-мишени, но и состоянием биологического объекта как динамической системы.

Б.И. Тарусовым и Ю.Б. Кудряшовым было показано, что свободные радикалы могут возникать при действии радиации и в неводных средах - в липидных слоях биомембран. Эта теория получила название "теории липидных радиотоксинов".

Своеобразной интегральной теорией, объясняющей биологическое действие ионизирующих излучений является структурно-метаболическая теория (1976). Автор этой теории А.М. Кузин считает, что нарушения под действием радиации обусловлены деструкцией всех основных биополимерных молекул, цитоплазматических и мембранных структур в живой клетке.

В настоящее время произошел сдвиг парадигмы от принципа попадания и теории мишени к эффекту «свидетеля».

 

 

11. Влияние радиации на клетки организма

Наиболее чувствительными к облучению органеллами клеток организма млекопитающих являются ядро и митохондрии. Повреждения этих структур при малых дозах и проявляются в самые ранние сроки. Так, при облучении митохондрий лимфатических клеток дозой 50 Р. и более наблюдается угнетение процессов окислительного фосфорилирования в ближайшие часы после облучения. При этом обнаруживаются изменения физико-химических свойств нуклеопротеидных комплексов, в результате чего количественно и качественно изменяются ДНК, и разобщается процесс синтеза ДНК - РНК - белок. В ядрах радиочувствительных клеток почти тотчас же после облучения угнетаются энергетические процессы, происходит выброс в цитоплазму ионов натрия и калия, нарушается нормальная функция мембран. Одновременно возможны разрывы хромосом, выявляемые в период клеточного деления, хромосомные аберрации и точковые мутации, в результате которых образуются белки, утратившие свою нормальную биологическую активность. Более выраженной радиочувствительностью, чем ядра, обладают митохондрии.

Эффект воздействия ионизирующей радиации на клетку - результат комплексных взаимосвязанных и взаимообусловленных преобразований. Радиационное поражение клетки осуществляется в три этапа. На первом этапе излучение воздействует на сложные макромолекулярные образования, ионизируя и возбуждая их.Поглощенная энергия может мигрировать по макромолекулам, реализуясь в слабых местах. В ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи. Указанный этап повреждения может быть назван физической стадией лучевого воздействия на клетку.

Второй этап - химические преобразования. Они соответствуют процессам взаимодействия радикалов белков, нуклеиновых кислот и липидов с водой, кислородом, радикалами воды с биомолекулами и возникновению органических перекисей, вызывающих быстро протекающие реакции окисления, которые приводят к появлению множества измененных молекул. В результате этого начальный эффект многократно усиливается. Радикалы, возникающие в слоях упорядоченно расположенных белковых молекул, взаимодействуют с образованием «сшивок», в результате чего нарушается структура биологических мембран. Повреждение мембран приводит к высвобождению ряда ферментов. В результате повреждения лизосомных мембран наблюдается увеличение активности ДНК-азы, РНК-азы, и ряда других ферментов.

Третий этап - биохимический. Высвободившиеся ферменты путем диффузии достигают любой органеллы клетки и легко проникают в нее благодаря увеличению проницаемости мембран. Под воздействием этих ферментов происходит распад высокомолекулярных компонентов клетки, в том числе нуклеиновых кислот и белков.Действие ничтожно малых количеств поглощенной энергии оказывается для клетки губительным из-за физического, химического и биохимического усиления радиационного эффекта, и основную роль в развитии этого эффекта играет повреждение надмолекулярных структур, обладающих высокой радиочувствительностью.

Восстановление клеток от повреждений генетического аппарата

Задается вполне закономерный вопрос: неужели клетки не могут восстанавливаться самостоятельно? Известно, что успешность восстановления зависит от степени поврежденности всей клетки в целом. В клетках при облучении возникают повреждения двух типов - локальные повреждения хромосом и генерализованное повреждение внехромосомных компонентов. Повреждения обоих типов обратимы, и клетки могут от них восстанавливаться. При этом успешность восстановления клеток от хромосомных повреждений в большей мере зависит от того, насколько глубоко повреждены внехромосомные системы и сможет ли клетка восстановиться в первую очередь от этих повреждений.Повреждения, приводящие к мутациям, в значительной мере потенциальны, или обратимы. Клетки могут от них восстанавливаться. Клетки обладают системой ферментов, осуществляющих такое восстановление. Потенциальные повреждения не тождественны мутациям: они могут лишь приводить к мутациям. Чтобы потенциальное повреждение привело к мутации, или реализовалось, в клетке должны осуществляться определенные метаболические процессы. Следовательно, путь от первичного потенциального повреждения к мутации - метаболический путь, в котором принимают участие определенные ферменты. Изучение восстановления клеток от потенциальных повреждений направлено на выявление тех механизмов, с помощью которых клетки противостоят неблагоприятным факторам внешней среды и которые, возможно, участвуют в регуляции темпа естественного мутационного процесса. Изучение реализации потенциальных повреждений - это изучение путей и механизмов формирования наследственных изменений - мутаций генов, хромосом, плазмид.Клетки могут восстановиться от повреждения молекул ДНК. В случае действия ионизирующих излучений - главным образом разрывы одной или обеих цепей ДНК, а при действии разных химических агентов - различные химические изменения молекулы ДНК или ДНК-белкового комплекса.

12. Естественный и технологически измененный радиационный фон

ионизирующее излучение земного и космического происхождения, постоянно воздействующее на человека. В радиационный фон не входят местные радиационные загрязнения окружающей среды в результате деятельности человека, равно как и облучение на производстве или при рентгенодиагностике и других медицинских процедурах. Величина природного Р. ф. в определенных регионах Земли относительно постоянна.

Различают естественный, технологически измененный естественный и искусственный Р. ф. Естественный Р. ф. обусловлен космическим излучением и излучением природных радионуклидов. Технологически измененный Р. ф. формируется за счет природных источников ионизирующего излучения, например излучения рассеянных в окружающей среде естественных радионуклидов, извлеченных из недр Земли вместе с полезными ископаемыми или содержащихся в строительных материалах. Искусственный Р. ф. — глобальное загрязнение окружающей среды образующимися при расщеплении ядер урана и плутония искусственными радионуклидами; возник после начала испытали ядерного оружия, а также частично за счет сброса атомными электростанциями благородных газов, углерода и трития. Искусственный Р. ф. в масштабах земного шара в среднем оставляет 1—3% естественного радиационного фона.

Мерой Р. ф. на местности является мощность экспозиционной дозы (см. Доза ионизирующего излучения, Ионизирующие излучения ). На территории нашей страны на местности (высота 1 м от поверхности земли) Р. ф. колеблется в основном в пределах 5—25 мкР/ч. В местах залегания гранитов и др. минералов, содержащих повышенные концентрации урана и радия, величина Р. ф. и соответственно мощность дозы внешнего облучения на местности может достигать более 60 мкР/ч (норматив радиационной безопасности).

В медицинской практике Р. ф. оценивают по мощности поглощенной дозы в тканях организма, формируемой как внешним облучением, так и внутренним вследствие воздействия естественных радионуклидов, содержащихся в организме.

Влияние Р. ф. на здоровье человека полностью не выяснено. Некоторые специалисты считают, что человек в процессе эволюции адаптировался к Р. ф., поэтому он для него полностью безвреден. Существует точка зрения, что Р. ф. оказывает даже благоприятное действие на организм человека. Однако большинство специалистов концентрируют внимание на возможном отрицательном действии Р. ф. Так, предполагают, что от 5 до 40% всех случаев рака легкого обусловлены вдыханием радона и его дочерних продуктов в помещениях. Точных оценок опасности Р. ф. не существует, поскольку характерные для Р. ф. малые дозы ионизирующих излучений не вызывают в состоянии здоровья выраженных, поддающихся объективной регистрации сдвигов.

Согласно наиболее распространенной точке зрения, на которой основываются официальные международные и общественные принципы гигиенического нормирования радиационного воздействия (см. Радиационная безопасность ), любую дозу ионизирующего излучения, в т.ч. образуемую за счет Р. ф., нельзя считать абсолютно безопасной. Однако принизких дозах риск (эффект) очень мал и практически не поддается выявлению.

 

Радиационный фон

ионизирующее излучение земного и космического происхождения, постоянно воздействующее на человека. В радиационный фон не входят местные радиационные загрязнения окружающей среды в результате деятельности человека, равно как и облучение на производстве или при рентгенодиагностике и других медицинских процедурах. Величина природного Р. ф. в определенных регионах Земли относительно постоянна.

Различают естественный, технологически измененный естественный и искусственный Р. ф. Естественный Р. ф. обусловлен космическим излучением и излучением природных радионуклидов. Технологически измененный Р. ф. формируется за счет природных источников ионизирующего излучения, например излучения рассеянных в окружающей среде естественных радионуклидов, извлеченных из недр Земли вместе с полезными ископаемыми или содержащихся в строительных материалах. Искусственный Р. ф. — глобальное загрязнение окружающей среды образующимися при расщеплении ядер урана и плутония искусственными радионуклидами; возник после начала испытали ядерного оружия, а также частично за счет сброса атомными электростанциями благородных газов, углерода и трития. Искусственный Р. ф. в масштабах земного шара в среднем оставляет 1—3% естественного радиационного фона.

Мерой Р. ф. на местности является мощность экспозиционной дозы (см. Доза ионизирующего излучения, Ионизирующие излучения ). На территории нашей страны на местности (высота 1 м от поверхности земли) Р. ф. колеблется в основном в пределах 5—25 мкР/ч. В местах залегания гранитов и др. минералов, содержащих повышенные концентрации урана и радия, величина Р. ф. и соответственно мощность дозы внешнего облучения на местности может достигать более 60 мкР/ч (норматив радиационной безопасности).

 

 

13. Радиоактивное загрязнение природных сред в настоящее время

обусловлено следующими источниками (2, 3):

- глобально распределенными долгоживущими радиоактивными

изотопами (стронций-90 и др.) - продуктами испытаний ядерного

оружия, проводившихся в атмосфере и под землей;

- плановыми выбросами радиоактивных веществ в окружающую

среду от предприятий атомной промышленности и АЭС;

- аварийными выбросами и сбросами радиоактивных веществ в

окружающую среду от предприятий атомной промышленности и АЭС

(авария на Чернобыльской АЭС в 1986г.);

- привнесенной радиоактивностью (твердые радиоактивные

отходы и радиоактивные источники).

14. До́за излуче́ния — величина, используемая для оценки воздействия ионизирующего излучения на любые вещества, ткани и живые организмы.

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц..

Основные радиологические величины и единицы
Величина Наименование и обозначение единицы измерения Соотношения между единицами
Внесистемные Си
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·1010Бк 1 Бк = 1 расп/с 1 Бк=2.7·10-11Ки
Экспозицион- ная доза, X Рентген (Р, R) Кулон/кг (Кл/кг, C/kg) 1 Р=2.58·10-4 Кл/кг 1 Кл/кг=3.88·103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 рад-10-2 Гр 1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр, rem) Зиверт (Зв, Sv) 1 бэр=10-2 Зв 1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10-5 Гр·кг 1 Гр·кг=105 рад·г

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

15. Радиотоксикология изучает свойства радионуклидов и вызываемые ими патологические изменения в организме животных и человека с целью изыскания средств для ограничения их всасывания, ускорения выведения и печения радиационных поражений, а также регламентации безопасных концентраций радионуклидов в организме.

 

16. Радиоэкология - это раздел медицины, связанный с медицинским экологией, экологией человека, изучает действия радиоактивных излучений на организмы - людей, животных, растений. Существует медицинская радиоэкология, которая исследует влияние таких излучений на ткани, разрабатывает методы лечения онкологических заболеваний.

Практика – вопросы 2,3,14, 19,21,22, 25,28,29,30.

Учебник

Вопрос номер – 9 – страница 37

10-207

13 – 90

15 – 109

16 – 112

17-113

18- 142

20 – 167

23 – 290

24 – 124

 

<== предыдущая лекция | следующая лекция ==>
Радиационный пирометр | Радиобиология как наука и направления ее развития


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных