Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Средне индикаторное давление 5 страница




Для КЭУ с пусковым (ТАБ) и тяговым (ТЭП) источниками, работающими одновременно, предельная внешняя характеристика в трехмерном пространстве (, , ) соответствует поверхности (рис. 1.57). Здесь отрезки соответствуют напряжению .

 

 
 

 


1. Системы возбуждения тяговых генераторов. Требования к характеристикам генераторов.

2. Системы возбуждения при выпуклых характеристиках генератора.

3. Системы возбуждения при гиперболических характеристиках генератора.

4. Совместная работа теплового двигателя и генератора.


Для обеспечения изменения силы тяги и скорости локомотива, требуется регулирование тока нагрузки и напряжения генератора. Максимальные возможные значения тока и напряжения зависят от тяговых параметров локомотива — сцепного веса, мощности теплового двигателя, максимальной скорости движения и от параметров тяговых электродвигателей. Зависимость между мощностью, напряжением и током генератора определяется равенством

,

где Рг – полезная мощность генератора; Рд = Ревн – мощность на валу генератора, называемая далее «свободной» мощностью теплового двигателя; Ре – эффективная мощность на валу теплового двигателя; Рвн = (0,05 ÷0,07) Ре – мощность, расходуемая на вспомогательные нужды; η г = 0,92 ÷0,95 – КПД генератора.

Если пренебречь изменением вспомогательной нагрузки и КПД генератора, которые относительно мало меняются при постоянной мощности теплового двигателя, то предельная по мощности теплового двигателя зависимость Uг(Iг) изображается равнобокой гиперболой ВС (рис. 5.1 а). Она соответствует свободной мощности теплового двигателя при номинальном режиме, который, как правило, является предельным.

Максимальное значение тока генератора определяется максимальным током тяговых двигателей, который в свою очередь зависит от предельной по сцеплению колес с рельсами силы тяги. Так как коэффициент сцепления немного снижается при увеличении скорости движения, предельный по условиям сцепления ток генератора уменьшается при повышении напряжения и может быть изображен линией АВ (см. рис. 5.1а).

Максимальное значение напряжения генератора должно быть достаточным для обеспечения максимальной скорости движения поезда. Для наибольшего использования мощности теплового двигателя желательно, чтобы максимальная рабочая скорость могла быть реализована при полной мощности теплового двигателя, что соответствует некоторой точке С линии ограничения по мощности. Тогда ограничение по максимальному напряжению генератора может быть изображено горизонтальной линией CD, так как напряжение большее, чем в точке С, не требуется.

Линия ABCD представляет собой предельную внешнюю характеристику генератора, которую можно использовать при задан­ных тяговых параметрах локомотива. Зависимость Рд(Iг) свободной мощности теплового двигателя от тока генератора, соответствующая предельной внешней характеристике генератора, изображена на рис. 5.1 б. Полная мощность теплового двигателя может быть использована в диапазоне изменения тока от Iг мин (при максимальной скорости движения) до Iг макс (при наибольшей силе тяги).

Практически возможны также ограничения характеристики по режиму работы электропередачи. Как известно, в условиях эксплуатации коэффициент сцепления колеблется в широких пределах. Режим максимального тока при полной мощности является для генератора наиболее тяжелым по коммутации. Следует добиваться, чтобы ограничение по коммутации не препятствовало полному использованию сцепного веса локомотива при любых условиях сцепления.

Максимальные значения тока по линии ВА реализуются при трогании поезда в течение короткого времени. Длительный ток, допускаемый по нагреванию тяговых двигателей и генератора в течение неограниченного времени, меньше максимального и соответствует некоторой точке Н на характеристике (см. рис. 5.1 а).

В современном теплоэлектрическом подвижном составе, как правило, электропередача выполняется так, чтобы возможность полного использования тяговых параметров была обеспечена и ограничения по режиму ее работы были за пределами ограничений по тяговым параметрам. В некоторых локомотивах вследствие напряженных нагрузок электропередачи или для снижения веса последней максимальное напряжение ограничивается режимами электропередачи. При этом полная мощность теплового двигателя не может быть использована при больших скоростях.

При построении характеристик генератора иногда удобно пользоваться не напряжением генератора, а его ЭДС:

,

где Rг – сопротивление последовательных обмоток генератора.

В этом случае можно пользоваться также величиной электромагнитной мощности

, (5.1)

где η мг = 0,97…0,98 – коэффициент, учитывающий магнитные и механические потери в генераторе.

Предельная внутренняя характеристика Ег(Iг) генератора представлена на рис. 5.1 а линией B1A1С1D1 и отличается от предельной внешней характеристики на величину ординат линии OA1 падения напряжения в цепи якоря генератора.

Разделив все члены равенства (5.1) на угловую скорость ωД, получим

,

где Мэг – электромагнитный момент генератора; Мд – крутящий момент, передаваемый от дизеля генератору; Фг – магнитный поток генератора; см – постоянная генератора.

Отсюда следует, что при постоянной мощности теплового двигателя зависимость магнитного потока генератора от тока нагрузки является также приблизительно гиперболической. Если между тепловым двигателем и генератором имеется зубчатая передача, передаточное отношение входит в коэффициент см, момент и скорость приводятся к валу теплового двигателя.

Важнейшим требованием к электропередаче является обеспечение работы генератора по предельной характеристике ABCD. Для этого прежде всего необходимо, чтобы элементы ее были рассчитаны на работу по этой характеристике. Возможность практической реализации предельной характеристики зависит также от характеристик и системы регулирования электропередачи и, в частности, от системы возбуждения генератора.

При движении поезда на участке с переменным профилем пути предельная характеристика не всегда может быть реализована. На уклонах реализуемая мощность уменьшается вследствие ограничений по скорости, в ряде случаев (проезд раздельных пунктов, в кривых участках пути малого радиуса и т. п.) мощность необходимо уменьшать для снижения скорости. Полная мощность не может быть реализована в начале разгона поезда после остановки и при движении локомотива с малым числом вагонов.

Мощность теплового двигателя можно регулировать изменением подачи топлива или угловой скорости вала или одновременно обеих величин. Как указывалось ранее, для каждого теплового двигателя может быть найдена линия наибольшей экономичности FG (рис. 5.2), определяющая величину крутящего момента Мд теплового двигателя, при которой КПД его является наибольшим при заданном значении угловой скорости. Номинальный режим работы теплового двигателя (точка S) определяется, как правило, условиями получения наибольшей мощности и не всегда отвечает условию наибольшей экономичности, но при понижении мощности целесообразно так выбирать значения крутящего момента и угловой скорости, чтобы режим работы двигателя был близок к оптимальному по экономичности. Если линия наибольшей экономичности соответствует кривой FG (см. рис. 5.2), то крутящий момент следует изменять по линии SGF или хотя бы по линии SLF.

Если в двигателе, работающем в номинальном режиме, уменьшить подачу топлива, угловая скорость двигатель-генератора начнет снижаться согласно уравнению движения

.

Равновесный режим наступит, когда момент сопротивления генератора станет равным моменту теплового двигателя при новой подаче топлива. Для этого, очевидно, необходимо, чтобы момент сопротивления генератора уменьшался при снижении скорости. Для того чтобы двигатель работал в режиме наибольшей экономичности, зависимость момента сопротивления генератора от угловой скорости должна соответствовать линии FS или FG. Линии наибольшей экономичности различны для разных тепловых двигателей. Следовательно, для экономичной работы необходимо для каждого двигателя подбирать требуемую зависимость Мгд).

Пониженная мощность двигатель-генератора может быть реализована при малых токах нагрузки генератора (например, при движении на уклоне с малой силой тяги) и при больших токах (трогание поезда большого веса). Для соответствия момента сопротивления генератора режиму наибольшей экономичности при любых возможных нагрузках нужно, чтобы при любой угловой скорости магнитный поток генератора изменялся приблизительно обратно пропорционально току. Высокая точность поддержания постоянного момента при этом не обязательна, поскольку в зоне наибольшей экономичности КПД теплового двигателя сравнительно мало меняется при некоторых отклонениях момента или скорости. Величина тока нагрузки определяет силу тяги, развиваемую тяговыми электродвигателями. При установившемся движении сила тяги равна силе сопротивления движению и, следовательно, зависит от скорости движения, профиля пути и других внешних для двигатель-генератора условии работы. Кроме того, как указывалось, при каждой угловой скорости двигатель-генератора требуется реализация различных величин тока. Поэтому принудительное регулирование тока в зависимости от угловой скорости двигатель-генератора нецелесообразно, за исключением режима трогания поезда, рассмотренного ниже.

Отсюда вытекает, что при движении поезда на участке необходимо изменять магнитный поток генератора в зависимости от угловой скорости. При некотором заданном токе нагрузки момент сопротивления пропорционален магнитному потоку, и, следовательно график зависимости Фг(пд) при Iг = const должен быть близким по форме к линии наибольшей экономичности теплового двигателя (например, кривая FS на рис. 5.2). При изменении тока нагрузки масштаб ординат графика меняется. Диапазон изменения тока зависит от тяговых параметров. Следовательно, требуемые характеристики зависимости Фг(пд) имеют вид сетки кривых (рис. 5.3). Для разных тепловых двигателей форма и наклон характеристики существенно различны, однако во всех случаях магнитный поток должен увеличиваться при возрастании угловой скорости.

Как будет показано ниже, от наклона кривой Мг(пд) зависит степень использования полной мощности и стабильность режима работы теплового двигателя при саморегулировании.

Таким образом, требуемые зависимости Фг(пд) должны быть определены при проектировании с учетом особенностей характеристик и параметров теплового двигателя и электропередачи. По этим характеристикам может быть построена сетка кривых Фг(Iг) (рис. 5.4 а) и Eг(Iг) (рис. 5.4 б) при различных угловых скоростях.

Сила тяги локомотива при трогании поезда с места должна устанавливаться в зависимости от желательного ускорения последнего, его веса и условий сцепления. Минимальная пусковая сила тяги не должна превышать величины, определяемой допустимым ускорением (0,4…0,6 м/сек2) при трогании локомотива без поезда на горизонтальном пути. Максимальная сила тяги ограничивается условиями сцепления его колес с рельсами. Должна быть также обеспечена возможность реализации промежуточных значений пусковой силы тяги путем плавного или ступенчатого изменения ее. Количество ступеней в последнем случае должно быть достаточным, чтобы при переключении ступеней толчки силы тяги и тока не были слишком велики. Величина пусковой силы тяги выбирается машинистом (или автомашинистом) в зависимости от указанных выше условий.

Если тяговые электродвигатели работают по своим естественным характеристикам, потребляемый ими ток снижается по мере увеличения скорости движения и машинист для обеспечения требуемого ускорения должен переводить рукоятку контроллера для увеличения силы тяги. При этом возникают толчки тока, которые при недостаточно умелом управлении могут привести к потере сцепления колес с рельсами. Наиболее совершенный способ управления пуском заключается в сочетании возможности выбора пусковой силы тяги по условиям пуска с автоматическим поддержанием приблизительно постоянной величины ее в процессе пуска. При этом упрощается управление, обеспечивается плавный пуск и уменьшается опасность потери сцепления колес с рельсами.

Сила тяги определяется токами электродвигателей, пропорциональными току генератора. Следовательно, указанный способ пуска может быть обеспечен, если ток генератора при пуске поддерживается приблизительно постоянным для заданного положения рукоятки контроллера и меняется при изменении ее положения, как показано линиями A1B1, А2В2... (см. рис. 5.4). В принципе возможно раздельное управление изменением мощности дизеля (линии В1С1, В2С2) и пускового тока. Преимуществом раздельного управления является возможность выбора любой силы тяги при пуске и любой мощности в конце пуска, что делает управление более гибким. Практически наиболее часто применяется управление одной рукояткой таким образом, что каждому положению ее соответствуют определенные пусковой ток и режим теплового двигателя, т. е. определенная характеристика A1B1C1, A2B2C2,....

При уменьшении угловой скорости и мощности целесообразно также снижать максимальную величину магнитного потока генератора, чтобы уменьшить мощность возбудителя. Для получения наибольшей мощности при пониженной скорости пришлось бы увеличивать размеры возбудителя.

Таким образом, серия характеристик вида A1B1C1D1, A2B2C2D2 (рис. 5.4) в сочетании с характеристиками (см. рис. 5.3) является наиболее желательной, причем распределение характеристик должно быть по возможности равномерным в диапазоне частот вращения вала дизеля от nд ном до nд 5

Характеристики. (рис. 5.4 а и 5.4 б) можно получить, изменяя магнитный поток или н. с. генератора по двум параметрам: току нагрузки и угловой скорости. Магнитный поток должен увеличиваться при возрастании угловой скорости. При увеличении тока нагрузки от нуля магнитный поток (пли напряжение) должен сохраняться приблизительно постоянным, затем уменьшаться приблизительно обратно пропорционально току, после чего снижаться при сравнительно постоянном токе. Следует отметить, что во второй зоне важно не получение определенной формы характеристики генератора, а обеспечение использования той мощности, которую может развить тепловой двигатель при номинальной скорости и наибольшей допустимой подаче топлива.

Указанные задачи могут быть решены наиболее полно и точно с помощью специальных систем автоматического регулирования. Такие системы получили широкое распространение в различных видах теплоэлектрического подвижного состава, и в настоящее время ведутся интенсивные работы по созданию и исследованию новых, совершенных систем автоматического регулирования.

Нередко применяются системы возбуждения генератора, при которых без использования специальных регулирующих устройств могут быть характеристики генератора, в большей или меньшей степени приближающиеся к требуемым. Такие системы в отличии от систем автоматического регулирования называются системами саморегулирования двигатель-генератора. Уступая первым по точности регулирования, они являются более простыми по схеме и более надежными в работе. Находят применение также системы, являющиеся сочетанием систем саморегулирования с системами автоматического регулирования. В этих системах регуляторы служат для повышения использования мощности и улучшения пусковых характеристик.

В данном курсе рассматриваются наиболее характерные примеры систем возбуждения генератора без регуляторов, т. е. систем саморегулирования, и характеристики, создаваемые ими. В зависимости от формы внешних характеристик Uг(Iг) или соответствующих им кривых Фг(Iг) эти системы можно разделить на две группы. При использовании схем одной группы указанные характеристики при неизменной угловой скорости имеют вид кривых, выпуклых относительно осей координат. Эти характеристики в дальнейшем называются кратко выпуклыми. В системах другой группы получаются характеристики, близкие по форме к кривым ВС, B1C1,...(cм. рис. 5.4), которые условно называются в дальнейшем гиперболическими.


Трехобмоточный генератор

Трехобмоточным называют генератор, имеющий три обмотки возбуждения: независимую, параллельную и последовательную, действующую навстречу двум первым (см. рис. 5.5). Якоря тягового генератора G1 и возбудителя G2 приводятся во вращение от дизеля, а обмотка возбуждения L4 получает питание от независимого источника (аккумуляторной батареи). Независимая обмотка возбуждения L3 тягового генератора может получать питание и от источника с постоянным напряжением, например, от аккумулятора.

Результирующая н. с. обмоток генератора

Fг=Fнез+FпарFпослFр я,

где Fнез=wнезiнез – н.с. обмотки независимого возбуждения с числом витков wнез на полюс; Fпар=wпарiпар – н.с. обмотки параллельного возбуждения с числом витков wпар на полюс; Fпосл = wпослIг – н.с. последовательной обмотки с числом витков wпосл на полюс; Fр я = кряIг – н.с., эквивалентная размагничивающему действию реакции якоря, которая может быть сведена к нулю при повороте щёток от нейтрали против направления вращения якоря.

Н. с. параллельной обмотки

,

где wпар и Rпар – количество витков на полюс и сопротивление цепи (вместе с добавочным сопротивлением) параллельной обмотки возбуждения соответственно; Rг – сопротивление цепи якоря генератора.

Следовательно н. с. генератора

, (5.2)

где .

Обозначив через λ Г магнитную проводимость магнитной цепи генератора, получим

или . (5.3)

Из равенства (5.3) следует, что трехобмоточный генератор удовлетворяет основным требованиям саморегулирования двигатель-генератора, так как магнитный поток уменьшается с увеличением тока нагрузки и возрастает с повышением угловой скорости.

Если магнитная цепь генератора при всех значениях магнитного потока является ненасыщенной, то магнитную проводимость и коэффициент реакции якоря можно приближенно принять постоянными.

На рис. 5.6 приведены кривые, показывающие характер зависимости магнитного потока от тока нагрузки и частоты вращения вала дизеля при ненасыщенной магнитной цепи генератора. Зависимость магнитного потока от тока является линейной.

Максимальное значение тока по равенству (5.2) получается из условия Фг= 0, чему соответствует ток

Из сопоставления характеристик при Fнез=const и Fнезнnд видно, что во втором случае характеристики Фг(nд) при прочих равных условиях круче. Изменение максимального тока в зависимости от частоты вращения вала дизеля полезно, так как позволяет получить различные пусковые токи без всяких переключений в схеме.

Влияние насыщения магнитной цепи на форму характеристик генератора удобнее выяснить путем графического построения их. Для качественного анализа, как и прежде, коэффициент кр принимается постоянным. Из равенства (5.2) следует, что при холостом ходе (Iг = 0 ) н. с. генератора равна сумме н. с. независимой и параллельной обмоток. Отложив по оси абсцисс отрезки (рис. 5.7) 0а=Fнез и ас=Fпар, получим э. д. с. холостого хода генератора Ег =вс.

Угловой коэффициент прямой (отношение ординаты к абсциссе) определяется из равенства

.

Нетрудно убедиться, что прямая является линией зависимости падения напряжения в цепи параллельной обмотки от н.с., так как для любого значения н.с. параллельной обмотки Fпар=аf

,

где iпар 1 – ток параллельной обмотки для точки е.

При холостом ходе падение напряжения в цепи параллельной обмотки равно ЭДС генератора. Следовательно, ЭДС определяется точкой пересечения характеристики холостого хода с линией падения напряжения в параллельной обмотке, проведенной из точки а под углом β с угловым коэффициентом кпар, зависящим только от параметров цепи параллельной обмотки.

При некотором токе нагрузки IГ1 ЭДС генератора снижается вследствие размагничивающего влияния последовательной обмотки и реакции якоря, а также из-за уменьшения н. с. параллельной обмотки в результате снижения напряжения в ее цепи. Для опре­деления ЭДС и напряжения генератора необходимо построить треугольник в1gd (см. рис. 5.7) с катетами в1g=(кр я+wпосл)Iг1 и gd=RгIг1 и расположить его так, чтобы вершина d находилась на линии , так как напряжение генератора равно падению напряжения в цепи параллельной обмотки. При этом ордината точки d определяет напряжение генератора и ордината точки в1 – его ЭДС при токе Iг1.

Если провести прямую а1в1, параллельную , то

.

Следовательно, для определения ЭДС генератора при любом токе следует отложить от точки а влево отрезок аа1, равный произведению wпосл на заданный ток, и из точки a1 провести прямую, параллельную линии до пересечения с характеристикой холостого хода.

На рис. 5.8 изображено построение внутренней характеристики генератора Ег(Iг) (левый квадрант) по двум характеристикам холостого хода при различных насыщениях магнитной цепи (правый квадрант). Из построения видно, что форма внутренней характеристики определяется формой характеристики холостого хода

Коэффициент кря, учитывающий размагничивающее влияние реакции якоря, можно принимать постоянным только при ориентировочных предварительных расчетах. Практически для расчета характеристик необходимо пользоваться нагрузочными характеристиками, представляющими собой зависимость Ег или магнитного потока Ег/nд от намагничивающей силы Fг при различных токах нагрузки (см. рис. 5.9).

 

 

Параметры обмоток возбуждения выбираются по режимам гмакс, Iгмин) и гмин, Iгмакс) при номинальной мощности. При этом

и ,

где . Так как число неизвестных больше числа уравнений, одна из величин предварительно задается. Удобно выбрать коэффициент кпар так, чтобы угол β был немного больше угла α. Затем полученное число витков последовательной обмотки округляют до целого числа. Возможно использование двух параллельных цепей в последовательной обмотке. При этом эффективное число витков, может быть кратным 0,5.

Генератор со встречной обмоткой (противокомпаундный)

Наличие отдельного возбудителя обеспечивает зависимость магнитного потока от угловой скорости, и параллельная обмотка генератора не является в этом случае обязательной. Поэтому нередко применяют генератор с двумя обмотками: независимого возбуждения, питающейся от возбудителя, и последовательной, действующей навстречу первой (рис. 5.10). Такой генератор иногда называют противокомпаундным. Результирующая н. с. обмоток генератора

Fг=Fнез-wпослIг-Fр я.

Практически характеристики генератора – Ег/nд =f(Iг) рассчитываются по нагрузочным характеристикам (см. рис. 5.11), причем аа1=wпослIг1, аа2=wпослIг2 и т.д.

Параметры обмоток определяются однозначно уравнениями:

Fгмакс=Fнез-wпослIгмин

Fгмин=Fнез-wcIгмакс

Однако, как указывалось, число витков последовательной обмотки должно быть округлено с соответствующей корректировкой Fнез.

В сравнении с трехобмоточным генератором конструкция противокомпаундного генератора упрощается вследствие исключения высоковольтной параллельной обмотки, требующей усиленной изоляции и имеющей в результате относительно низкий коэффициент заполнения обмоточного пространства. С другой стороны, число витков последовательной обмотки, необходимое для ограничения пускового тока, в противокомпаундном генераторе должно быть больше, чем в трехобмоточном. При максимальном напряжении н. с. независимой обмотки противокомпаундного генератора примерно одинакова с суммой н. с. независимой и параллельной обмоток трехобмоточного генератора, но в трехобмоточном генераторе н. с. параллельной обмотки при пуске мала, и соответственно требуется меньшая размагничивающая н. с. В противокомпаундном генераторе н. с. последовательной обмотки близка по величине к полной н. с. независимой обмотки. В свою очередь повышение wпосл требует увеличения Fнез для получения максимальной ЭДС. Мощность возбудителя для противокомпаундного генератора больше, чем для трехобмоточного.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных