![]() Обратная связь ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Краткие сведения о структуре ДНК
1. Мономером является нуклеотид, который состоит из нуклеозида и остатка фосфорной кислоты. Нуклеозид, в свою очередь, состоит из азотистого основания и сахара (дезоксирибозы, которая относится к пентозам). Азотистые основания: Пурины: аденин и гуанин (в молекуле 2 гетероцикла: 6- и 5- членные). Пиримидины: тимин, цитозин и урацил (в молекуле одно 6 – членное кольцо). В 1949 – 1951 гг. группа американских ученых под руководством Эдвина Чаргаффа установила важные закономерности химического состава ДНК, которые были названы правилами Чаргаффа: 1) Содержание пуринов (А+Г) = содержанию пиримидинов (Т+Ц). 2) Содержание А = содержанию Т. 3) Содержание Г = содержанию Ц. 2. Нуклеотиды образуют полинуклеотидные цепи: углеродный атом в 5' – положении дезоксирибозы одного нуклеотида через остаток ортофосфорной кислоты соединяется с углеродным атомом в 3' – положении соседнего нуклеотида. Число полинуклеотидных цепей равно двум. Антипараллельность –противоположная ориентация двух цепей. 3. Каждая цепь образует спираль по 10 пар оснований в каждом витке; длина одного витка – 3,4 нм. Диаметр спирали – 1,7 нм. 4. Цепи закручены одна вокруг другой, и обе вместе - вокруг общей оси. Такая спираль называется плектонемически закрученной, т. е. её компоненты нельзя разделить без раскручивания. Спираль имеет одну мелкую бороздку(шириной 12 А)и однуглубокую (шириной 22 А). 5. Молекулы сахара и фосфатные группировки находятся снаружи спирали (это – сахаро – фосфатный остов), а основания – внутри, где они расположены с интервалом 0,34 нм под прямым углом к оси молекулы. 6. Цепи удерживаются вместе водородными связями между основаниями (2 связи между А и Т, 3 – между Г и Ц). 7. Пары, образуемые основаниями, всегда специфичны (А соответствует Т, а Т – А и Г соответствует Ц, а Ц – Г); т. е. основания и цепи комплементарны друг другу (принцип дополнения: если известна последовательность одной цепи, то легко предсказать последовательность другой). 8. Последовательности нуклеотидов – это и есть та информация, которая определяет структуру белков и их уникальность. 9. Существуют 5 форм ДНК: - В – форма, правозакрученная (при движении вдоль оси вверх спирали поворачиваются вправо); основное состояние ДНК в кристаллах и растворе; - А – форма, правозакрученная, более плотно упакованная, чем - Z – форма – левозакрученная; образуется в плазмидах при суперспирализации и в междисках политенных хромосом дрозофилы; - С – форма – правозакрученная, по степени растянутости промежуточнач между А и В; существует при пониженной концентрации Na и влажности 44-66 %; - D – форма – правозакрученная, закручена сильнее, чем В-ДНК и имеет глубокий малый желоб (удобную полость для воды и ионов); встречается только в АТ-богатых участках фага Т2. Пространственную структуру ДНК расшифровали в 1953 г.: Джеймс Уотсон (р. 1928 г.) – американский биохимик, Френсис Крик (р. 1916 г.) – английский физик, Морис Уилкинс (р. 1916 г.) – английский физик (рентгеноструктурный анализ ДНК). Они предложили пространственную модель ДНК в виде двойной спирали, за что в 1962 г. стали лауреатами Нобелевской премии.
Репликация ДНК Репликация – процесс удвоения молекул ДНК. Он основан на следующих принципах: 1.Комплементарность– каждая дочерняя нить образуется по матрице, которой служит материнская нить. 2. Полуконсервативность– в каждой дочерней двойной спирали одна нить старая, т. е. половина материнской молекулы «законсервирована» в дочерней. Возможными моделями были также консервативная и дисперсионная(из фрагментов). В 1958 г. М. Мезелсон, Ф. Сталь и Д. Виноград доказали существование полуконсервативногомеханизма на основании опытов центрифугирования ДНК E.сoli, меченной изотопами 15N и 14N, в градиенте концентрации Cs Cl. 3.Антипараллельность. Две комплементарные нити синтезируются в противоположных направлениях. ДНК – полимераза III, которая осуществляет синтез новой цепи, движется по материнской нити только от 3' – конца к 5' – концу, т. е. синтез двух новых цепей идет в противоположных направлениях. Новая же нить наращивается всегда от 5' – к 3' – концу. 4.Прерывистость. Двойная спираль должна быть раскручена, чтобы сработала ДНК – полимераза, но вся огромная хромосома не может быть раскручена из одной точки, т.к. временные и энергетические затраты были бы слишком велики. Поэтому раскручивание и репликация начинается одновременно в нескольких местах, которые называются точками начала репликации (origin). На самом деле это не точки, а участки ДНК протяженностью 300 п. н., узнаваемые специфическими белками. Двойная цепь ДНК, начиная от локуса ori, разделяется на 2 цепи под действием фермента ДНК – геликазы (рвёт водородные связи). Процесс идет в двух противоположных направлениях с образованием двух репликационных вилок (между ними – репликационный глазок). Образующиеся одинарные цепи стабилизируются SSB - белками, связывающими однонитевую ДНК (от англ. single – strand DNA – binding proteins), которые «садятся» на остовы цепей. Тетрамер этого белка связывается с участком ДНК протяженностью 32 нуклеотида. Более 200 молекул белка присутствует в каждой репликационной вилке. Расхождение спирально закрученных цепей родительской ДНК обусловливает образование суперспиралей (супервитков) перед репликационной вилкой, это вызывает напряжениев молекуле ДНК и должно было бы приводить к скорой остановке процесса. Однако этого не происходит благодаря действию фермента ДНК – гиразы (относится к классу ДНК – топоизомераз). Он разрывает одну из цепей родительской ДНК, связываясь с ней ковалентно; далее происходит вращение обрывка этой цепи вокруг неразорванной второй цепи и снятие напряжения. После этого происходит отсоединение ДНК – гиразы и восстановление фосфодиэфирной связи разорванной цепи. Синтез дочерних цепей ДНК осуществляет фермент ДНК – полимераза III; мономерами являются дезоксирибонуклеозидтрифосфаты (дНТФ), которые связываются друг с другом ковалентно и отдают в раствор (точнее, в кариоплазму) пирофосфат. Однако ДНК – полимераза не может начинать синтез путем соединения двух первых нуклеотидов; она лишь может пришивать очередной дНТФ к 3' – ОН – концу уже имеющейся дочерней цепочки определенной длины, т. е. нужна некая «затравка». Поэтому репликационная вилка является асимметричной: из двух синтезируемых цепей одна («лидирующая») строится непрерывно, ее синтез идет быстрее, затравкой служит 3' – конец другой материнской цепи в точке начала репликации. Другая цепь называется запаздывающей, или отстающей, т. к. она растет путем сборки из отдельных фрагментов, которые называются фрагментами Оказаки; их длина: 1000…2000 нуклеотидов у прокариот и 100…200 нуклеотидов у эукариот. Фрагменты Оказаки синтезируются в «разрешенном» направлении (от 5' – к 3' – концу), но с участием РНК – затравок, или праймеров. Роль затравок выполняют короткие последовательности РНК (около 10 рибонуклеотидов), образующиеся на матричной цепи ДНК с помощью РНК – праймазы. Праймаза связывается с ДНК – геликазой и ДНК, образуя некий комплекс – праймосому, и синтезирует на отстающей цепи РНК – затравку. Эта затравка удлиняется за счет действия ДНК – полимеразы I, которая затем отделяется от ДНК. После этого ДНК – полимераза III удаляет РНК – затравку и одновременно заполняет бреши ДНК - нуклеотидами. После замены всех нуклеотидов РНК на нуклеотиды ДНК остается разрыв между соседними фрагментами Оказаки, который «сшивается» ДНК – лигазой. Интересно, что отстающая цепь изгибается так, что ее ДНК – полимераза III образует комплекс с ДНК – полимеразой лидирующей цепи («модель тромбона»). Весь этот сложно организованный комплекс цепей нуклеиновых кислот и ферментов называют репликационной машиной, или реплисомой. Скорость репликации: ~1000 нуклеотидов в секунду у прокариот, ~100 нуклеотидов в секунду у эукариот. Участок ДНК между точкой начала репликации (ori) и точкой ее окончания (сайт терминации, ter) называется репликоном. Для терминации необходим специальный белок (продукт гена tus), который узнает последовательности ter и предотвращает дальнейшее продвижение вилки репликации. У бактерий хромосома представляет собой один репликон, в эукариотической хромосоме имеются десятки репликонов. В бактериальной клетке процесс синтеза ДНК ведут 15 разных ферментов, в эукариотической клетке их еще больше. Сложность и координированность процессов репликации ДНК обеспечивают точность воспроизведения генетической информации. Исследовал механизмы репликации американский биохимик Артур Корнберг(р. 1918 г.), который в 1957 г. обнаружил у E.сoli фермент Лекция № 2 Тема лекции: Наследственная информация и её реализация в клетке (продолжение) План лекции: 1. Генетический код 2. Транскрипция 3. Особенности строения и созревания и-РНК 4. Биосинтез белка 5. Регуляция транскрипции и трансляции
Генетический код В клетке передача генетической информации осуществляется в следующем направлении: ДНК → и–РНК → белок (это центральная догма молекулярной биологии, предложенная Френсисом Криком в 1958 г.) Каким же образом происходит перевод информации с «языка» нуклеотидов (их 4) на «язык» аминокислот (их 20), из которых построены белки? Для этого служит генетический код – система записи информации о последовательности аминокислот в белках с помощью последовательности нуклеотидов в нуклеиновых кислотах. Свойства генетического кода: 1. Код триплетен. Каждая аминокислота из 20 зашифрована последовательностью из трёх нуклеотидов, которая называется триплет, или кодон (т. е. это слово из трех букв, а букв всего четыре). Если бы слова состояли из одной буквы, то можно было бы зашифровать всего четыре аминокислоты (41); если из двух букв, - то получается 42 = 16 аминокислот, т. е. этого недостаточно. Поэтому кодоны и состоят из трех букв, что обеспечивает возможность зашифровать 43 = 64 аминокислоты, а их всего 20. Получается, теоретически, что 44 комбинации – лишние, однако в реальности им тоже нашлось применение. В начале 50-х гг. предположение о триплетности кода высказал математик Георгий Гамов. 2. Код вырожден (избыточен). Каждая аминокислота шифруется более чем одним кодоном (от двух до шести). Исключение составляют 2 аминокислоты: метионин (АУГ) и триптофан (УГГ), каждая из них кодируется только одним триплетом. В этом есть особый смысл. 3. Код однозначен. Каждый кодон шифрует только определенную аминокислоту. Этим обеспечивается строгая воспроизводимость генетической информации, напротив – замена хотя бы одной буквы (мутация) может привести к тяжелому заболеванию. 4. Непрерывность: считывание происходит непрерывно, триплет за триплетом, без пропусков. Имеются особые сигналы окончания трансляции: стоп – кодоны (УАА, УАГ, УГА). 5. Неперекрываемость: соседние триплеты не перекрываются; каждый нуклеотид входит в состав только одного триплета. 6. Код универсален почти для всех живущих на Земле организмов!!! Расшифровали генетический код в 1961 г. Р. Холли, Х. Коранаи М. Ниренберг (Нобелевская премия в 1968 г.).
Транскрипция ДНК находится в ядре. Сборка белков происходит на рибосомах, которые находятся в цитоплазме и на мембране шероховатой эндоплазматической сети (ЭПС). Как передается информация от ДНК на рибосому? – Для этого в клетке существует специальный посредник, или посланник (от англ. messenger) – информационная РНК (и – РНК). Информация переписывается с ДНК на Процесс переписывания генетической информации с ДНК на и – РНК называется транскрипцией (от лат. transcriptio – переписывание). Осуществляет транскрипцию фермент РНК – полимераза. У прокариот это один фермент, включающий субъединицы 2α, β, β’ и σ. У эукариот имеются уже 3 фермента: РНК – полимераза I, которая осуществляет синтез крупных рибосомальных РНК (рРНК)в ядрышке; И-РНК – однонитевая молекула. Синтез и – РНК также подчиняется принципу комплементарности, как и в случае репликации ДНК, только вместо тиминав РНК входит урацил. Длина и – РНК в сотни раз меньше длины ДНК. Транскрипция состоит из 3-х стадий: 1. Инициация (начало синтеза) – РНК-полимераза узнает промотор (участок ДНК, имеющий сродство к данному ферменту; это «посадочная площадка» для него). Матрицей для синтеза и – РНК может служить лишь одна из цепей ДНК, которая называется матричной, другая цепь называется кодогенной. РНК – полимераза «садится» на матричную цепь, раскручивает ближайший виток спирали ДНК и «ползет» по ней в направлении от 3' – к 5' – концу. Образующаяся цепь РНК наращивается от 5' – к 3' – концу. Первым нуклеотидом в и – РНК всегда является пуриновый: аденин или, редко, гуанин, т. к. стартовыми кодонами служат АУГ или ГУГ. 2. Элонгация (удлинение цепи). Скорость элонгации у прокариот – 14 кодонов в секунду (при температуре 37 0С). При этом скорость трансляции почти такая же, т. е. 15 аминокислот в секунду. 3. Терминация – обрыв цепи. Терминатор транскрипции – специфичная последовательность ДНК, которую узнает РНК - полимераза и отделяется как от ДНК, так и от РНК. В прокариотических клетках терминаторы обязательно содержат палиндромы (инвертированные повторы). При синтезе комплементарной им последовательности рибонуклеотидов в и-РНК последняя образует шпильку за счет спаривания повторяющихся последовательностей. Шпилька служит для РНК – полимеразы сигналом терминации. Кроме того, за палиндромом располагаются области ДНК, богатые А – Т парами. Образующаяся поли –У– цепочка РНК слабо взаимодействует с такой матричной цепью и легко обрывается. У эукариот палиндромы в области терминации не выявлены, но А – Т – участки тоже есть.
|