Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Краткие теоретические сведения




 

Закалка стали – это термическая обработка стали, которая применяется для получения максимально возможной твердости и прочности стали.

В зависимости от температуры нагрева закалку называют полной и неполной. При полной закалке происходит полное фазовое превращение, т. е. сталь при нагреве переводят в однофазное аустенитное состояние.

Полной закалке подвергают доэвтектоидные стали, нагревая их выше критической температуры GS (Ас3) на 30-50°С (рис. 1).

При неполной закалке происходит неполная фазовая перекристаллизация, т. е. сталь нагревают до межкритических температур – между РSК (Ас1) и GS (Ас3) или между РSК (Ас1) и SЕ (Асm). Заэвтектоидные стали подвергают неполной закалке, нагревая их выше линии РSК (Ас1) на 30-50°С (рис. 1).

 

Рис. 1. Левая часть диаграммы железо-углерод. Оптимальный интервал

температур для нагрева стали под закалку.

 

Время нагрева и выдержки детали в печи при закалке зависит от температуры нагрева, формы и размеров детали (табл. 1).

 

Таблица 1

Температура нагрева, °С Форма изделия
Круг Квадрат Пластина
Продолжительность нагрева, мин
на 1 мм диаметра на 1 мм толщины
1,5 0,8 0,4 2,2 1,5 1,2 0,6 1,6 0,8

 

Охлаждение стали при закалке производят с большой скоростью (несколько сотен градусов в секунду). При такой высокой скорости охлаждения диффузия углерода в кристаллической решетке железа произойти не успеет, а кристаллическая решетка g-железа, путем сдвига атомов железа друг относительно друга на расстоянии меньше межатомных, перестраивается в a-железо. Так как диффузия атомов углерода и железа отсутствует, т. е. процесса является бездиффузионным, то содержание углерода в решетке a-железа будет равно содержанию углерода в решетке g-железа аустенита в результате чего решетка a-железа оказывается пересыщенной углеродом, деформируется и становится тетрагональной (рис. 2).

Эта новая фаза с тетрагональной кристаллической решеткой железа называется мартенситом.

Мартенсит – это пересыщенный твердый раствор внедрения углерода в a-железо. Мартенсит имеет высокую твердость, в основном, из-за пересыщения решетки a-железа углеродом и его твердость возрастает с увеличением содержания углерода. Так как целью закалки является получение максимально возможной твердости и прочности стали, то охлаждение стали при закалке необходимо проводить с такой скоростью, чтобы получить мартенситную структуру.

Скорость охлаждения зависит, в основном, от содержания в стали легирующих элементов и определяется диаграммой изотермического превращения аустенита (рис. 3).

 

Рис. 2. Схема тетрагональной решетки мартенсита Рис. 3. Диаграмма изотермического превращения аустенита стали У8 (τ – время)

 

Диаграмма изотермического превращения стали У8 состоит из следующих областей.

I – область устойчивого аустенита.

II – область неустойчивого переохлажденного аустенита.

III – область распада аустенита на феррито-цементитную смесь.

IV – область продуктов распада аустенита на феррито-цементитную смесь.

V – область бездиффузионного превращения аустенита в мартенсит.

Две С-образные кривые 1 и 2 на диаграмме указывают, соответственно, время начала и конца распада аустенита на феррито-цементитную смесь.

Две горизонтальные линии Мн и Мк на диаграмме указывают, соответственно, температуру начала и конца бездиффузионного превращения аустенита в мартенсит.

Наименьшей устойчивостью переохлаждаемый аустенит обладает при ~550°С. Превращения в интервале температур Ас1 – 550°C называют перлитным, а в интервале 550°С – Мн промежуточным или бейнитным.

В области перлитного превращения аустенит, в зависимости от степени переохлаждения, превращается в феррито-цементитную смесь пластинчатого строения различной степени дисперсности, под которой понимается суммарная толщина расположенных рядом пластин феррита и цементита.

Перлит – крупнодисперсная смесь пластинок феррита и цементита с суммарной толщиной пластинок 8-10 микрон.

Сорбит – среднедисперсная смесь пластинок феррита и цементита с суммарной толщиной пластинок 6-8 микрон.

Тростит – мелкодисперсная смесь пластинок феррита и цементита (смесь высокой степени дисперсности) с суммарной толщиной пластинок 2-4 микрона.

С увеличением скорости охлаждения возрастает дисперсность феррито-цементитной смеси, что приводит к увеличению прочности и твердости стали и уменьшению ее пластичности.

При скоростях охлаждения больше критической скорости охлаждении Vкр, аустенит переохлаждается до температуры начала мартенситного превращения Мн и начинается мартенситное превращение.

Критическая скорость охлаждения или критическая скорость закалки Vкр – это минимальная скорость охлаждения, при которой происходит бездиффузионное превращение аустенита в мартенсит.

Мартенсит зарождается на границе зерна аустенита и в виде линзообразной пластины прорастает через все зерно аустенита. Затем образуются следующие пластины мартенсита, которые расположены под определенным углом к ранее образовавшимся пластинам мартенсита, т. е. образование мартенсита происходит не за счет роста ранее образовавшихся пластин мартенсита, а за счет образования новых пластин мартенсита. Пластины мартенсита выглядят под микроскопом в виде иголок (рис. 4а) и поэтому говорят, что мартенсит имеет игольчатую структуру, причем размер игл мартенсита тем больше, чем больше исходное зерно аустенита.

Рис. 4. Микроструктура закаленной стали и ее условная зарисовка:

а) мартенсит мелкоигольчатый; б) мартенсит + цементит;

в) мартенсит крупноигольчатый (перегрев стали); г) мартенсит + феррит (недогрев стали); д) мартенсит + тростит (замедленное охлаждение)

При перегреве стали вырастает зерно аустенита и при закалке получится крупноигольчатый мартенсит (рис. 4в).

Образование мартенсита происходит с увеличением объема, и поэтому аустенит остаточный будет находиться в напряженном состоянии.

Если охлаждение стали в области V мартенситного превращения прекратить и дать выдержку, то структура стабилизируется и при дальнейшем охлаждением мартенситное превращение либо вообще не происходит, либо происходит с задержкой и не в полном объеме. Для того чтобы мартенситное превращение прошло наиболее полно, сталь необходимо непрерывно охлаждать до линии конца мартенситного превращения (закалка холодом).

Микроструктура закаленной стали зависит от температуры нагрева и скорости охлаждения. Нагрев до рекомендуемых температур Ас3 + (30…50)°С доэвтектоидных сталей при полной и Ас1 + (30…50)°C заэвтектоидных сталей при неполной закалке позволяет получить структуру мелкоигольчатого мартенсита (рис. 4а) и мартенсита и вторичного цементита (рис. 4б).

Охлаждение при закалке со скоростью меньше критической вызывает образование наряду с мартенситом, тростита (рис. 4д), что приводит к уменьшению твердости стали.

Углеродистые стали имеют высокую критическую скорость закалки Vкр и поэтому их закаливают в воде или водных растворах солей со скоростью охлаждения 600°С/сек. и выше.

Легирующие элементы в легированных сталях, за исключением кобальта, повышают устойчивость аустенита, что приводит к смещению вправо линии начала превращения аустенита в феррито-цементитную смесь на диаграмме изотермического превращения аустенита легированных сталей, что, в свою очередь, приводит к уменьшению критической скорости закалки легированных сталей. Поэтому легированные стали закаливают в масле со скоростью охлаждения ~ 150°С/сек.

 

 

vikidalka.ru - 2015-2018 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных