Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Формирование первичных теоретических моделей и законов




Обратимся теперь к анализу второй ситуации развития теоретических знаний, которая связана с формированием частных теоретических схем и частных теоретических законов. На этом этапе объяснение и предсказание эмпирических фактов осуществляются уже не непо­средственно на основе картины мира, а через применение создавае­мых теоретических схем и связанных с ними выражений теоретичес­ких законов, которые служат опосредующим звеном между картиной мира и опытом.

В развитой науке теоретические схемы вначале создаются как ги­потетические модели, а затем обосновываются опытом. Их построе­ние осуществляется за счет использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели.

Только на ранних стадиях научного исследования, когда осуществля­ется переход от преимущественно эмпирического изучения объектов к их теоретическому освоению, конструкты теоретических моделей создаются путем непосредственной схематизации опыта. Но затем они используются в функции средства для построения новых теорети­ческих моделей, и этот способ начинает доминировать в науке. Преж­ний же метод сохраняется только в рудиментарной форме, а его сфе­ра действия оказывается резко суженной. Он используется главным образом в тех ситуациях, когда наука сталкивается с объектами, для теоретического освоения которых еще не выработано достаточных средств. Тогда объекты начинают изучаться экспериментальным пу­тем и на этой основе постепенно формируются необходимые идеали­зации как средства для построения первых теоретических моделей в новой области исследования. Примерами таких ситуаций могут слу­жить ранние стадии становления теории электричества, когда физика формировала исходные понятия — «проводник», «изолятор», «элект­рический заряд» и т.д. и тем самым создавала условия для построения первых теоретических схем, объясняющих электрические явления.

Большинство теоретических схем науки конструируются не за счет схематизации опыта, а методом трансляции абстрактных объектов, которые заимствуются из ранее сложившихся областей знания и со­единяются с новой «сеткой связей». Следы такого рода операций лег­ко обнаружить, анализируя теоретические модели классической фи­зики. Например, объекты фарадеевской модели электромагнитной индукции «силовые линии» и «проводящее вещество» были абстраги­рованы не прямо из опытов по обнаружению явления электромагнит­ной индукции, а заимствовались из области знаний магнитостатики («силовая линия») и знаний о токе проводимости («проводящее веще­ство»). Аналогичным образом при создании планетарной модели ато­ма представления о центре потенциальных отталкивающих сил внут­ри атома (ядро) и электронах были почерпнуты из теоретических знаний механики и электродинамики.

В этой связи возникает вопрос об исходных предпосылках, которые ориентируют исследователя в выборе и синтезе основных компонентов создаваемой гипотезы. Хотя такой выбор и представляет собой творче­ский акт, он имеет определенные основания. Такие основания создает принятая исследователем картина мира. Вводимые в ней представле­ния о структуре природных взаимодействий позволяют обнаружить об­щие черты у различных предметных областей, изучаемых наукой.

Тем самым картина мира «подсказывает», откуда можно заимство­вать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий.

Целенаправляющая функция картины мира при выдвижении ги­потез может быть прослежена на примере становления планетарной модели атома.

Эту модель обычно связывают с именем Э. Резерфорда и часто изла­гают историю ее формирования таким образом, что она возникала как непосредственное обобщение опытов Резерфорда по рассеянию а-частиц на атомах. Однако действительная история науки далека от этой ле­генды. Резерфорд осуществил свои опыты в 1912 г., а планетарная мо­дель атома впервые была выдвинута в качестве гипотезы физиком японского происхождения X. Нагаока значительно раньше, в 1904 г.

Здесь отчетливо проявляется логика формирования гипотетических вариантов теоретической модели, которая создается «сверху» по отно­шению к опыту. Эскизно эта логика применительно к ситуации с плане­тарной моделью атома может быть представлена следующим образом.

Первым импульсом к ее построению, равно как и к выдвижению це­лого ряда других гипотетических моделей (например, модели Томсона), послужили изменения в физической картине мира, которые произошли благодаря открытию электронов и разработке Лоренцом теории электро­нов. В электродинамическую картину мира был введен, наряду с эфиром и атомами вещества, новый элемент «атомы электричества». В свою оче­редь, это поставило вопрос об их соотношении с атомами вещества. Об­суждение этого вопроса привело к постановке проблемы: не входят ли электроны в состав атома? Конечно, сама формулировка такого вопроса была смелым шагом, поскольку она приводила к новым изменениям в картине мира (нужно было признать сложное строение атомов вещест­ва). Поэтому конкретизация проблемы соотношения атомов и электро­нов была связана с выходом в сферу философского анализа, что всегда происходит при радикальных сдвигах в картине мира (например, Дж.Дж. Томсон, который был одним их инициаторов постановки вопро­са о связи электронов и атомов вещества, искал опору в идеях атомисти­ки R Босковичи, чтобы доказать необходимость сведения в картине ми­ра «атомов вещества» к «атомам электричества»).

Последующее развитие физики подкрепило эту идею новыми экс­периментальными и теоретическими открытиями. После открытия Радиоактивности и ее объяснения как процесса спонтанного распада атомов в картине мира утвердилось представление о сложном строе­нии атома. Теперь уже эфир и «атомы электричества» стали рассмат­риваться как формы материи, взаимодействие которых формирует все остальные объекты и процессы природы. В итоге возникла задача — построить «атом вещества» из положительно и отрицательно заря­женных «атомов электричества», взаимодействующих через эфир.

Постановка такой задачи подсказывала выбор исходных абстракций для построения гипотетических моделей атома — это должны быть аб­страктные объекты электродинамики. Что же касается структуры, в ко­торую были включены все эти абстрактные объекты, то ее выбор в ка­кой-то мере также был обоснован картиной мира. В этот период (конец XIX — начало XX в.) эфир рассматривался как единая основа сил тяго­тения и электромагнитных сил, что делало естественной аналогию меж­ду взаимодействием тяготеющих масс и взаимодействием зарядов.

Когда Нагаока предложил свою модель, то он исходил из того, что аналогом строения атома может служить вращение спутников и колец вокруг Сатурна: электроны должны вращаться вокруг положительно заряженного ядра, наподобие того как в небесной механике спутники вращаются вокруг центрального тела.

Использование аналоговой модели — это способ переноса из небес­ной механики структуры, которая была соединена с новыми элемента­ми (зарядами). Подстановка зарядов на место тяготеющих масс в ана­логовую модель привела к построению планетарной модели атома.

Таким образом, в процессе выдвижения гипотетических моделей картина мира играет роль исследовательской программы, обеспечи­вающей постановку теоретических задач и выбор средств их решения.

После того как сформирована гипотетическая модель исследуемых взаимодействий, начинается стадия ее обоснования. Она не сводится только к проверке тех эмпирических следствий, которые можно полу­чить из закона, сформулированного относительно гипотетической модели. Сама модель должна получить обоснование.

Важно обратить внимание на следующее обстоятельство. Когда при формировании гипотетической модели абстрактные объекты включа­ются в новые отношения, то это, как правило, приводит к наделению их новыми признаками. Например, при построении планетарной мо­дели атома положительный заряд был определен как атомное ядро, а электроны были наделены признаком «стабильно двигаться по орби­там вокруг ядра».

Предположив, что созданная таким путем гипотетическая модель выражает существенные черты новой предметной области, исследова­тель тем самым допускает, во-первых, что новые, гипотетические при знаки абстрактных объектов имеют основание именно в той области эмпирически фиксируемых явлений, на объяснение которых модель претендует, и, во-вторых, что эти новые признаки совместимы с други­ми определяющими признаками абстрактных объектов, которые были обоснованы предшествующим развитием познания и практики.

Понятно, что правомерность таких допущений следует доказывать специально. Это доказательство производится путем введения абстракт­ных объектов в качестве идеализации, опирающихся на новый опыт. Признаки абстрактных объектов, гипотетически введенные «сверху» по отношению к экспериментам новой области взаимодействий, теперь вос­станавливаются «снизу». Их получают в рамках мысленных эксперимен­тов, соответствующих типовым особенностям тех реальных эксперимен­тальных ситуаций, которые призвана объяснить теоретическая модель. После этого проверяют, согласуются ли новые свойства абстрактных объ­ектов с теми, которые оправданы предшествующим опытом.

Весь этот комплекс операций обеспечивает обоснование призна­ков абстрактных объектов гипотетической модели и превращение ее в теоретическую схему новой области взаимодействий. Будем называть эти операции конструктивным введением объектов в теорию.

Теоретическую схему, удовлетворяющую описанным процедурам, будем называть конструктивно обоснованной.

4.Роль аналогий и процедура обоснования теоретических знаний.
В современном процессе научного исследования достаточно ощутимой становится роль аналогий. Перенос абстрактных объектов из одной области знания в другую, которым пользуется современное теоретическое знание, предполагает в качестве своего основания метод аналогий, который указывает на отношения сходства между вещами. Этот достаточно широко распространенный способ отождествления свойств объектов или самих объектов восходит к древнейшей традиции, отзвуком которой являются размышления пифагорейцев о числовой структуре мироздания, т.е. о соотношении числовых соответствий и космической гармониии сфер.
«Все вещи суть числа», «число владеет вещами», — таковы выводы Пифагора. Единое начало в непроявленном состоянии равно нулю; когда оно воплощается, то создает проявленный полюс абсолюта, равный единице. Превращение единицы в двойку символизирует о разделении единой реальности на материю и дух, свидетельствует, что знание об одном является знанием о другом. Онтологическим основанием метода аналогий является известный принцип о единстве мира, который согласно античной традиции интерпретируется двояко: единое есть многое и многое есть единое.
Огромное значение аналогия играла в метафизике Аристотеля, который трактовал ее как форму проявления единого начала в единичных телах. Значение аналогии можно понять, обратясь к рассуждениям средневековых мыслителей Августина и Фомы Аквинского. Августин говорил о сходстве Творца и его творения; Фома Аквинский рассматривал «аналогии сущего», свидетельствующие о неодинаковом и неоднозначном распределении совершенства в универсуме. Творец обладает всей полнотой бытия, остальные сущности обладают им «по аналогии», т.е. в определенной соразмерности.
Современные исследователи выделяют 1) аналогию неравенства, когда разные предметы имеют одно имя (тело небесное, тело земное; 2) аналогию пропорциональности (здоровье физическое — здоровье умственное); 3) аналогию атрибуции, когда одинаковые отношения или качества приписываются разным объектам (здоровый образ жизни — здоровый организм — здоровое общество и т.п.).
Таким образом, умозаключение по аналогии позволяет уподоблять новое единичное явление другому, уже известному явлению. Аналогия с определенной долей вероятности позволяет расширять знания путем включения в их сферу новых предметных областей. Примечательно, что Гегель очень высоко ценил возможности метода аналогий, называя его «инстинктом разума».
Абстрактные объекты, транслируемые из одной сферы в другую, должны удовлетворять связям и взаимодействиям складывающейся области знания. Поэтому всегда актуален вопрос о достоверности аналогии. В силу того, что история науки дает значительное количество примеров использования аналогий, аналогия признана неотъемлемым средством научного и философского умопостижения.
Различают аналогии предметов и аналогии отношений, а также строгую и нестрогую аналогию. Строгая аналогия обеспечивает необходимую связь переносимого признака с признаком сходства; аналогия нестрогая носит проблемный характер. Важно отметить, что в отличие от дедуктивного умозаключения в аналогии имеет место уподобление единичных объектов, а не подведение отдельного случая под общее положение.
Важную роль в становлении классической механики играла аналогия между движением брошенного тела и движением небесных тел; аналогия между геометрическими и алгебраическими объектами реализована Декартом в аналитической геометрии; аналогия селективной работы в скотоводстве использовалась Дарвином в его теории естественного отбора; аналогия между световыми, электрическими и магнитными явлениями оказалась плодотворной для теории электромагнитного поля Максвелла. Обширный класс аналогий используется в современных научных дисциплинах: в архитектуре и теории градостроительства, бионике и кибернетике, фармакологии и медицине, логике и лингвистике и др.
Известны также многочисленные примеры ложных аналогий. Таковы аналогии между движением жидкости и распространением тепла в учении о «теплороде» XVII—XVIII вв., биологические аналогии социал-дарвинистов в объяснении общественных процессов и др.
Следует добавить, что метод аналогии широко используется в сфере технических наук. В технических науках принято различать изобретение (т.е. создание нового и оригинального) и усовершенствование (преобразование существующего). Иногда в изобретении усматривается попытка имитации природы, имитационное моделирование, аналогия между искусственно созданным предметом и природной закономерностью.
Так, цилиндрическая оболочка — распространенная форма, используемая для различных целей в технике и быту, — универсальная структура многочисленных проявлений растительного мира. Совершенной ее моделью является стебель. Именно у живой природы заимствованы аналоги решений оболачивания конструкций. Велика роль пневматических сооружений — они помогли человеку впервые преодолеть силу земного притяжения, открыть эру воздухоплавания. Их идея также взята из природы, ибо одним из совершеннейших образцов пневматических конструкций является биологическая клетка. Некоторые плоды и семена приспособились к распространению в природе при помощи своеобразных «парашютов», «паруса» или же крылатого выроста. Нетрудно усмотреть аналогию и сходство между столь изощренными способами естественного приспособления и более поздними продуктами человеческой л цивилизации, эксплуатирующими модель паруса, парашюта, крыла и т.п.
У изобретения-имитации больше оснований быть вписанным в природу, поскольку при этом ученый пользуется секретами природы, ее решениями и находками. Но изобретение — это еще и создание нового, не имеющего аналогов.
И если роль и значение аналогии в современной науке необходимо доказывать, то процедура обоснования всегда считалась значимым компонентом научного исследования. Да и сама наука частенько трактовалась как чисто «объяснительное мероприятие». При этом необходимо строго провести разграничение между обоснованием, описанием и объяснением. Самое элементарное определение обоснования опирается на процедуру сведения неизвестного к известному, незнакомого к знакомому. Однако последние достижения науки показывают, что многие процессы современной физической картины мира принципиально непредставимы и невообразимы. Это свидетельствует о том, что обоснование лишается модельного характера, наглядности и должно опираться на чисто концептуальные приемы, в которых сомнению подвергается сама процедура сведения (редукции) неизвестного к известному.
Возникает и еще один парадоксальный феномен: объекты, которые необходимо объяснить, оказывается, нельзя наблюдать в принципе. Таким образом, научно-теоретическое познание приобретает, увы, внеопытный характер.
По отношению к логике научного открытия весьма paспространена позиция отказа от поисков рациональных обосновании научного открытия. В логике открытия большое место отводится смелым догадкам, часто ссылаются на инсайт, аналоговое моделирование. Широко распространены указания на эвристику и интуицию, которая сопровождает процесс научного открытия.
Самый общий взгляд на механизм развития научного знания с позиций рационализма свидетельствует о том, что знание, как уже говорилось, может быть расчленяющим (аналитическим) и обобщающим (синтетическим). Аналитическое знание позволяет прояснить детали и частности, выявить потенциал содержания, присутствующий в исходной основе. Синтетическое знание ведет не просто к обобщению, а к созданию принципиально нового содержания, которое ни в разрозненных элементах, ни в их суммативной целостности не содержится. Суть аналитического подхода состоит в том, что основные существенные стороны и закономерности изучаемого явления полагаются как нечто содержащееся в заданном, взятом за исходное. Исследовательская работа осуществляется в рамках уже очерченной области, поставленной задачи и направлена на анализ ее внутреннего потенциала. Синтетический подход ориентирует исследователя на нахождение зависимостей за пределами самого объекта, в контексте извне идущих системных отношений.
Достаточно традиционное представление о том, что возникновение нового связано лишь с синтезом, не может оставаться без уточнения. Бесспорно, именно синтетическое движение предполагает формирование новых теоретических смыслов, типов мысленного содержания, новых горизонтов, нового слоя реальности. Синтетическое — это то новое, которое выводит к обнаружению качественно иной, отличной от прежней, имеющейся в наличии основы. Аналитическое движение предполагает логику, направленную на выявление элементов, о которых еще не знали, но которые содержались в предшествующей основе. А.Ф. Лосев также подчеркивает, что сущность аналитического отрицания заключается в том, что оно нечто прибавляет к неподвижной дискретности. Вся новизна аналитического отрицания заключается в том, что оно указывает на некоторого рода сдвиг, как бы он ни был мал и близок к нулю, на некоторого рода приращение этой величины. Аналитическая форма получения нового знания фиксирует новые связи и отношения предметов, которые уже попали в сферу практической деятельности человека. Она тесно связана с дедукцией и с понятием «логическое следование».

В логике открытий вычленяются те области, где развитие происходит по аналитическому типу на основе раскрытия исходных основоположений, также фиксируются сферы, где осуществляется «прерыв постепенности», выход за пределы наличного знания. Новая теория в этом случае опрокидывает имеющиеся логические каноны и возводится на принципиально иной, конструктивной основе. Конструктивное видоизменение наблюдаемых условий, полагание новых идеализаций, созидание иной научной предметности, не встречающейся в готовом виде, интегративное перекрещивание принципов на «стыке наук», ранее казавшихся не связанными друг с другом, — таковы особенности логики открытия, дающей новое знание, имеющее синтетический характер и большую эвристическую ценность, чем старое. Взаимодействие традиций и новаций, с одной стороны, указывает на необходимость сохранения преемственности, наличную совокупность методов, приемов и навыков, а с другой стороны, демонстрирует потенциал, превосходящий способ репродукции накопленного опыта, предполагающий созидание нового и уникального.
Логика открытия нацеливает на осознание таких ускользающих из поля зрения факторов, как побочный продукт взаимодействий, непреднамеренные последствия целеполагающей деятельности. (Например, Колумб хотел открыть новый путь в Индию, а открыл неизвестный ранее материк — Америку.) Расхождение целей и результатов — довольно частый процесс. В конечном результате сопрягаются по крайней мере три напластования: содержание первоначально поставленной цели, побочный продукт взаимодействий и непреднамеренные последствия целесообразной деятельности. Они свидетельствуют о многомерности природных и социальных взаимодействий. Признание нелинейности, альтернативности — особенность новой стратегий научного поиска.
Современный ученый должен быть готов к фиксации и анализу результатов, полученных вне и помимо его сознательного целеполагания, в том числе и к тому, что последние могут оказаться гораздо богаче, чем исходная цель. Вычлененный в качестве предмета изучения фрагмент бытия на самом деле не является изолированной абстракцией — он связан с бесконечной динамикой универсума. Главные и побочные, центральные и периферийные, магистральные и тупиковые направления развития, имея свои ниши, сосуществуют в постоянном неравновесном взаимодействии. Возможны ситуации, когда развивающееся явление не несет в себе в готовом виде формы будущих состояний, а получает их извне как побочный продукт взаимодействий, происходящих за рамками самого явления или, по крайней мере, на периферии этих рамок. И если ранее наука могла позволить себе отсекать эти боковые ветви, казавшиеся несущественными, то сейчас это непозволительная роскошь. Оказывается, вообще непросто определить, что значит «неважно» или «неинтересно» в науке. Возникая на периферии связей и отношений, в том числе и под влиянием факторов, которые незначительным образом проявили себя в прошлом, побочный продукт может быть источником новообразования и быть даже более существенным, чем первоначально поставленная цель. Он свидетельствует о неистребимом стремлении бытия к осуществлению всех своих потенций. Здесь происходит своеобразное уравнивание возможностей, когда все, что имеет место быть, заявляет о себе и требует признанного существования.
Неоднозначность логики построения научного знания отмечена многими философами.
Так, М.К. Мамардашвили в монографии «Формы и содержание мышления» подчеркивает, что в логическом аппарате науки необходимо различать два типа познавательной деятельности. К первому отнесены средства, позволяющие получить массу новых знаний из уже имеющихся, пользуясь доказательством и логическим выведением всех возможных следствий. Однако при этом не производится выделение принципиально нового мыслительного содержания в предметах и не предполагается образование новых абстракций. Второй способ предполагает получение нового научного знания «путем действия с предметами», которое основывается на привлечении содержания к построению хода рассуждений. Здесь речь идет об использовании содержания в каком-то новом плане, никак не следующем из логической формы имевшихся знаний и любой их перекомбинации.
В работах «Критерии смысла», «Дилемма теоретика» современного немецко-американского философа науки Карла Густава Гемпеля (1905-1997) обращается особое внимание на проблему выяснения отношений между «теоретическими терминами» и «терминами наблюдения». Гемпель показывает, что при сведении значения теоретических терминов к значению совокупности терминов наблюдения теоретические понятия оказываются излишними. Они оказываются излишними и в том случае, если при введении и обосновании теоретических терминов полагаются на интуицию. Следовательно, теоретические термины не могут быть сведены к терминам наблюдения, и никакая комбинация терминов наблюдения не может исчерпать теоретических терминов.
Эти положения имели огромное значение для осознания статуса теоретических моделей в науке. «Дилемма теоретика», по мнению исследователей, может быть представлена в виде следующих утверждений:
1. Теоретические термины либо выполняют, либо не выполняют свою функцию.
2. Если теоретические термины не выполняют своей функции, то они не нужны.
3. Если теоретические термины выполняют свои функции, то они устанавливают связи между наблюдаемыми явлениями.
4. Эти связи могут быть установлены и без теоретических терминов.
5. Если же эмпирические связи могут быть установлены и без теоретических терминов, то теоретические термины не нужны.
6. Следовательно, теоретические термины не нужны и когда они выполняют свои функции, и когда они не выполняют этих функций.
Гемпель ставит проблему отличия законов и объяснений в естествознании и истории. Научные исследования в различных областях стремятся не просто обобщить определенные события в мире нашего опыта, но и выявить регулярность в течении этих событий и установить общие законы, которые могут быть использованы для предсказания и объяснения. Согласно обоснованной им модели «охватывающих законов», событие объясняется, когда утверждение, описывающее это событие, дедуцируется из общих законов и утверждений, описывающих предшествующие условия; общий закон является объясняющим, если он дедуцируется из более исчерпывающего закона. Гемпель впервые четко связал объяснение с дедуктивным выводом, а дедуктивный вывод — с законом; кроме того, он сформулировал условия адекватности объяснения. По мнению ученого, общие законы имеют аналогичные функции в истории и в естественных науках, образуют неотъемлемый инструмент исследования и составляют общие основания различных процедур, которые часто рассматриваются как специфические для социальных наук в отличие от естественных.
Исторические исследования часто используют общие законы, установленные в физике, химии, биологии. Например, поражение армии объясняют отсутствием пищи, изменением погоды, болезнями и т.п. Определение дат в истории с помощью годичных колец деревьев основывается на применении определенных биологических закономерностей. Различные методы эмпирической проверки подлинности документов, картин, монет используют физические и химические теории. Однако во всех случаях историческое прошлое никогда не доступно прямому изучению и описанию.
Анализируя весь исторический арсенал объяснения, необходимо различать метафоры, не имеющие объяснительного значения, наброски объяснений, среди которых есть как научно приемлемые, так и псевдообъяснения, и, наконец, удовлетворительные объяснения. Гемпель предусмотрел необходимость процедуры дополнения, предполагающую форму постепенно растущего уточнения используемых формулировок, чтобы набросок объяснения можно было бы подтвердить, опровергнуть или указать приблизительно тип исследования. Важной является и процедура реконструкции, направленная на осознание лежащих в основании объяснительных гипотез, оценку их значимости и эмпирической базы. С его точки зрения, использование допущений «следовательно», «потому что», «поэтому» и т.п., — часто показывает, что предлагаемые объяснения слабо обоснованы или неприемлемы. Во многих случаях эта процедура выявляет ошибку утверждения.
Например, географические или экономические условия жизни группы людей можно принять в расчет при объяснении некоторых общих черт, скажем, их искусства или морального кодекса; но это не означает, что таким образом мы подробно объяснили художественные достижения этой группы людей или систему их морального кодекса. Из описания географических или экономических условий невозможно вывести подробное объяснение аспектов культурной жизни.
Правильному обоснованию способствует обособление одной или нескольких важных групп фактов, которые должны быть указаны в исходных условиях и утверждении того, что рассматриваемое событие «детерминируется» и, следовательно, должно объясняться в терминах только этой группы фактов.

Научное объяснение включает в себя следующие элементы:
• эмпирическую проверку предложений, свидетельствующих об определенных условиях;
• эмпирическую проверку универсальных гипотез, на которых основывается объяснение;
• исследование, является ли объяснение логически убедительным.
Предсказание в отличие от объяснения — это утверждение о некотором будущем событии. Здесь даны исходные условия, а следствия еще не имеют места, но должны быть установлены. Можно говорить о структурном равенстве процедур обоснования и предсказания. Очень редко, однако, объяснения формулируются столь полно, что могут проявить предсказательный характер. Выделяют объяснения «причинные» и «вероятностные», основанные скорее на вероятностных гипотезах, чем на общих «детерминистских» законах, т.е. законах в форме универсальных условий.
В «Логике объяснения» К. Гемпель утверждает, что объяснить явления в мире нашего опыта — значит ответить скорее на вопрос «почему?», чем просто на вопрос «что?». Наука всегда стремилась выйти за пределы описания и прорваться к объяснению. Существенной характеристикой обоснования является опора на общие законы.
Например, когда человеку, находящемуся в лодке, часть весла, находящаяся под водой, представляется надломанной вверх, это явление объясняется с помощью закона преломления и закона оптической плотности сред: вода обладает большей оптической плотностью, чем воздух. Поэтому вопрос «Почему так происходит?» понимается в смысле «согласно каким общим законам так происходит».
Однако вопрос «почему?» может возникать и по отношению к самим общим законам. Почему распространение света подчиняется закону преломления? Отвечая на этот вопрос, представители классической физики будут руководствоваться волновой теорией света. Таким образом, объяснение закономерности осуществляется на основе подведения ее под другую, более общую закономерность. На основе этого выводится структура объяснения, состоящая из двух частей:
1. описание явления;
2. класс предложений, которые приводятся для
объяснения данного явления, который в свою очередь, разбивается на два подкласса: один из них описывает условия, другой — общие законы.
Принцип причинного обоснования используется и в естественных, и в общественных науках. Объяснение действий в терминах мотивов агента рассматривается как особый вид телеологического объяснения, которое совершенно необходимо в биологии, так как объясняет характеристики организма посредством ссылок на определенные цели, существенные для сохранения его жизни или вида.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных