Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Метод найменших квадратів.




Метод найменших квадратів - метод теорії похибок для оцінки невідомої величини за результатами вимірювань, які містять випадкові похибки. Н-д, можна вирішити рівняння lnКр= -∆H/RT+∆S/R, визначити значення -∆H та ∆S, лабораторно дослідивши залежність Кр від 1/Т.

Рівняння регресії представляє математичну форму залежності фізичної величини, що досліджується, від факторів, що впливають на неї. Вибір того або іншого виду рівняння (що залежить від самого дослідника, який пропонує модель) визначає точність (адекватність), з якою модель описує в необхідних межах реальну дійсність. Такий вибір виду рівняння визначається дослідником на підставі апріорних даних про процес, вивчення факторів, що впливають на процес, від яких залежить величина, що вимірюється, а також зручності використання математичної моделі даного конкретного виду. Методи регресивного аналізу дозволяють із декількох різноманітних по виду моделей вибрати найбільш адекватну. Регресивний аналіз зводиться до визначення на підставі експериментальних даних коефіцієнтів моделі (коефіцієнтів регресії), оцінки значущості величин цих коефіцієнтів і ступеня адекватності моделі.

При статистичній оцінці ступеня адекватності моделі експериментальним результатам найбільш часто використовують критерій величини квадрата відхилення цих результатів від розрахункових значень, отриманих на підставі даної моделі.

Процедура оцінки значень коефіцієнтів регресії і адекватності, при якій квадрат відхилення є мінімальним, або метод для отримання математичної залежності величин у від величин х (емпіричної формули) зветься методом найменших квадратів (МНК).

За цим методом пряма, положення якої визначається значеннями розрахованих коефіцієнтів а та b, повинна проходити між дослідними точками таким чином, аби сума квадратів відхилень точок від неї була б мінімальною.

Приймають, що ці відхилення виміряються паралельно осі ординат, тобто похибці підлягають тільки значення функції. Це означає, що якщо позначити через уі виміряні значення, а через у – величини з шуканого рівняння, то треба підібрати такі значення а та b, аби сума Δу2=Σ(у-уі)2=Σ(а+b*х-уі)2 була мінімальною. Після диференціювання цього виразу отримують:

; ,

де n – число вимірювань.

Розрахунок проводять таким чином: за допомогою експериментальних даних х та у розраховують величини а та b , після чого підставляють їх в рівняння вигляду у=а*х+b. Для встановлення точності отриманої емпіричної формули треба підставити в неї нові значення х та, розрахувавши нові значення у, порівняти їх з експериментальними.

Для кількісної оцінки лінійної кореляції користуються вибірковим коефіцієнтом парної кореляції rxy– безрозмірною величиною до значень середніх квадратичних відхилень досліджуваних величин:

Коефіцієнт кореляції за абсолютною величиною не перевершує одиниці (|rxy| £1) і може приймати такі значення:

1) rxy = 0 — цей випадок відповідає відсутності зв'язку між x і y

2) rxy = +1 — між x і y існує строгий позитивний лінійний зв'язок

3) rxy = –1 — між x і y існує строгий негативний зв'язок

4) –1<rxy<+1 — це випадок, що найбільше часто зустрічається, і тут про кореляцію судять вже лише з точки зору більшої або меншої ймовірності.

Розмір коефіцієнта кореляції |rxy| служить тільки для оцінки тісноти лінійного зв'язку між величинами х і у: чим ближче абсолютна величина коефіцієнту до 1, тим зв'язок сильніше; чим ближче |rxy| до нуля, тим зв'язок менше.

 

vikidalka.ru - 2015-2018 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных