Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Термофилы и механизмы термофилии.




Группу термофилов делят на 4 подгруппы:

1. Термотолерантные виды растут в пределах от 10 до 55 — 60℃, оптимальная область лежит при 35 — 40℃. Основное отличие от мезофилов — способность расти при повышенных температурах, хотя оптимальные температуры роста для обеих групп находятся на одном уровне.

2. Факультативные термофилы имеют максимальную температуру роста между 50 и 65℃, но способны также к размножению при комнатной температуре (20℃); оптимум приходится на область температур, близких к верхней границе роста. Особенность этой группы прокариот — способность к росту в области от 20 до 40℃.

3. К облигатным термофилам относят виды, обнаруживающие способность расти при температурах около 70℃ и не растущие ниже 40℃. Оптимальная температурная область облигатных термофилов примыкает к их верхней температурной границе роста. Представители этой подгруппы: эубактерии Bacillus acidocaldarius, Synechococcus lividus, архебактерии Methanobacterium thermoautotrophicum, Thermoplasma acidophilum и др.

4. Экстремальные термофилы. Для них характерны следующие температурные параметры: оптимум в области 80 — 105℃, минимальная граница роста 60℃ и выше, максимальная — до 110℃. К экстремальным термофилам относятся организмы из группы архебактерии, не имеющие аналогов среди мезофилов, например представители родов Thermoproteus, Pyrococcus, Pyrodictium и др.

 

Способность расти при температурах от 50 до 70℃, свойственная представителям термотолерантных, факультативных и облигатных термофилов, не связана с осуществлением ими какого-либо одного специфического типа метаболизма. Среди них, найдены фотосинтезирующие, хемолитотрофные и хемогетеротрофные бактерии, а так же облигатные аэробы и анаэробы. Они структурно напоминают своих мезофильных аналогов и по типам осуществляемого ими конструктивного и энергетического метаболизма относятся к тем же группам, что и мезофильные виды. Температурный предел для фотосинтезирующих эубактерии ограничен 70 — 73°. Это связывают с их неспособностью формировать функционально активные фотосинтетические мембраны.

 

Верхний температурный предел, при котором зафиксирован рост в виде чистой бактериальной культуры в лаборатории, составляет 110°. Он обнаружен у архебактерии Pyrodictium occultum, растущей в диапазоне от 82 до 110° с оптимумом при 105°.

В природных условиях представители прокариот способны к росту при значительно более высоких температурах. Обнаружены бактерии способные расти при температуре воды 250 — 300° и давлении 265 атм (при этом давлении вода в жидком состоянии может находиться до 460°). Эти бактерии выделены из проб воды, поднятых с глубины 2560 м над поверхностью Тихого океана, где предположительно они существуют в горячих струях, выбрасываемых на дне океана так называемыми "черными гейзерами". Высказывается предположение, что прокариоты могут существовать везде, где есть вода в жидком состоянии и достаточное количество питательных веществ.

 

Экстремальные термофилы относятся исключительно к архебактериям и представлены метанобразующими формами и видами, метаболизм которых связан с молекулярной серой. Почти все они — строгие анаэробы, но есть среди них и аэробы (представители рода Sulfolobus). Конструктивный метаболизм авто- или гетеротрофного типа. Анаэробные автотрофы получают энергию в результате восстановления CO2 или SО молекулярным водородом с образованием в качестве конечных продуктов метана или сероводорода соответственно. Гетеротрофные экстремально термофильные анаэробы используют различные органические субстраты (белки, углеводы) для получения энергии в процессах брожения или анаэробного дыхания с молекулярной серой в качестве конечного акцептора электронов. Аэробные формы получают энергию в процессах, связанных с окислением молекулярной серы, железа или органических соединений.

 

Термофилия включает множество молекулярных механизмов и не может быть объяснена только каким-нибудь одним свойством организма. Предложено несколько гипотез для объяснения природы термофилии.

· Известно, что насыщенные жирные кислоты, входящие в состав липидов, имеют более высокую точку плавления по сравнению с ненасыщенными. Липиды термофилов имеют более высокие температуры плавления, чем липиды мезофилов, что достигается возрастанием содержания насыщенных жирных кислот в мембранах при повышении температуры культивирования. Было высказано предположение о том, что липиды способствуют термостабильности мембран, и что нижняя температурная граница роста термофилов определяется температурой плавления мембранных липидов.

 

· Многие исследователи считают, что определяющая роль в термофилии принадлежит белкам, в первую очередь ферментным. Возможно, основные температурные точки термофилов зависят от конформации одного или нескольких ключевых ферментов: при минимальной температуре роста происходит переход от жесткой неактивной конформации белковых молекул к конформации с ограниченной гибкостью; оптимальная температура роста определяет наиболее благоприятное конформационное состояние ферментных белков; при максимальной температуре начинаются нарушения конформации белков и снижение их ферментативной активности, а выше этой температуры рост прекращается вследствие тепловой денатурации белков.

 

· В одной из гипотез термофилии постулируется термостабильность структурных компонентов клетки термофилов. Оказалось, что клеточная стенка, мембраны, рибосомы термофилов значительно более термостабильны, чем соответствующие структуры мезофилов. Особенно большое внимание в этом плане привлекают клеточные мембраны.

 

Разобранные выше гипотезы, вероятно, дополняют друг друга. В природе нет четкого деления на группы. Из рисунка видно, что отмеченные на нем оптимальные температурные зоны для разных групп образуют почти непрерывный ряд температур, а температурные диапазоны, допускающие рост выделенных групп, значительно перекрываются.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных