Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Приливные силы в технической механике




Содержание

· 1 Физическая природа приливных сил в поле гравитации

· 2 Приливные силы во вращающихся телах

o 2.1 Приливные силы в технической механике

o 2.2 Приливные силы в небесной механике

§ 2.2.1 Проявления приливных сил в жёстких небесных телах

§ 2.2.2 Проявление приливных сил в небесных телах, имеющих жидкую оболочку

· 3 См. также

· 4 Примечания

· 5 Ссылки

Физическая природа приливных сил в поле гравитации

Для протяжённого тела, находящегося в гравитационном поле тяготеющей массы, силы гравитации различаются для ближней и дальней сторон тела. И разность этих сил ведёт к деформации тела в направлении градиента поля. Существенно, что напряжённость этих полей в случае, если они созданы точечными массами, уменьшается обратно пропорционально квадрату удаления от них. Такое изотропное в пространстве поле есть центральное поле. Мерилом напряжённости гравитационного поля является ускорение свободного падения.

Благодаря тому, что в широком диапазоне значений напряжённости оказывается справедливым принцип суперпозиции полей, напряжённость поля всегда может быть найдена путём векторного суммирования полей, созданных отдельными частями источника поля в том случае, когда по условиям задачи его нельзя считать точечным. Не менее существенно и то обстоятельство, что в случае однородного по плотности протяжённого сферического тела удаётся представить создаваемое им поле как поле точечного источника, обладающего массой, равной массе протяжённого тела, сосредоточенной в его геометрическом центре.

В простейшем случае, для тяготеющей точечной массы M на расстоянии R ускорение свободного падения (то есть напряжённость совместно создаваемыми этими телами гравитационного поля) , где G — гравитационная постоянная. Изменение ускорения da (приливное ускорение at) при изменении расстояния : . Переходя от ускорений к силам, для части тела массы , находящейся на расстоянии r от центра тела, находящегося на расстоянии R от тяготеющей массы массы M и лежащей на прямой, соединяющей массы и M, приливная сила .

Можно также наглядно представить физическую сущность приливных сил через третий закон Кеплера, также описывающий движение тел в неоднородном поле тяготения. Этот закон гласит, что периоды обращения тела в центральном поле тяготения соотносятся, как кубы больших полуосей их орбит; таким образом, тело (или часть его) находящееся ближе к источнику силового поля, будет двигаться по своей орбите с более высокой скоростью, чем расположенное дальше. Например, Земля движется вокруг Солнца со скоростью около 29 км/с, Марс — 24 км/с, а Юпитер — 13 км/с. Если мы мысленно соединим Марс с Землёю и Юпитером (в противоположных точках) неким бесконечно прочным канатом, то на поверхности Марса сразу же образуются (в точках присоединения каната) два приливных горба, и вскоре Марс будет разорван этими, фактически приливными силами. В системе Земля — Луна таким источником приливных сил можно представить движение Земли по орбите вокруг общего центра масс системы Земля — Луна. Часть Земли, расположенная ближе к этому центру масс, будет стремиться двигаться быстрее, чем расположенная дальше, формируя таким образом приливы, особенно хорошо заметные в гидросфере.

В силу принципа суперпозиции полей тяготения в системе двух тяготеющих тел приливные силы можно интерпретировать как отклонение поля тяготения в окрестностях тела под влиянием гравитации другой тяготеющей массы, такое отклонение для любой точки окрестности тела массы m может быть получено вычитанием векторов действительного ускорения свободного падения в этой точке и вектора ускорения свободного падения, вызванного массой m (См. Рис. 2).

Приливные силы во вращающихся телах

Типичным является случай вечного падения, которое совершают небесные тела, обращающиеся вокруг общего центра гравитации. В связи с этим приливная сила представляет собой термин, не только прижившийся в астрономии и небесной механике, но и вполне применимый к случаю вращения под действием любых сил, называемых центростремительными силами.

Приливные силы в технической механике

Физической основой возникновения приливных сил является различие в интенсивности центростремительных сил, действующих на находящиеся на разных расстояниях от центра вращения элементарные объёмы любого вращающегося тела независимо от того, находится ли этот центр внутри тела или же вне него. В случае, когда эти силы в каждой точке тела уравновешены силами любого происхождения, вращающееся тело сохраняет свою форму независимо от того, в каком агрегатном состоянии находится его вещество. Так, например, малая вращающаяся капля сохраняет свою целостность благодаря действию сил поверхностного натяжения, хотя при этом и деформируется.

Вращающееся (или обращающееся) вокруг некоторого центра тело сохраняет свою форму, если угловая скорость вращения любой его точки, находящейся на расстоянии от центра вращения, постоянна и одинакова для всех точек этого тела. В этом случае их центростремительные ускорения равняются , то есть линейно нарастают по мере удаления от центра притяжения.

В силу различия ускорений, разной плотности и механических свойств вещества во вращающемся теле может возникнуть весьма сложное силовое поле. Именно оно и является предметом рассмотрения в случае, когда речь идёт о приливных силах и их действии. Однако результирующая этого силового поля всегда является центростремительной силой, направленной к центру вращения и равной произведению центростремительного ускорения, испытываемого каждым элементарным объёмом тела и его массы.

Существенно, что в динамике для объяснения явления вращения (обращения) тела вокруг некоторого тела не требуется введение каких-либо иных сил, например «центробежной силы», поскольку приписываемый ей эффект есть не что иное, как проявление Первого закона Ньютона. И, если всё же этот термин используется, то, в соответствии с Третьим законом Ньютона, лишь применительно к другому телу, создающему центростремительную силу[1].

При метании спортивного молота его вращение по окружности вызвано силой, возникающей при деформации растяжения шнура, прикреплённого к его ближней точке. Дальняя его точка испытывает силу, равную силе, возникающей при деформации шнура плюс реакция материала самого молота на его растяжение. Эта суммарная сила и даёт необходимое ускорение дальней точке, при котором молот вращается, как единое целое. И это рассмотрение применимо к любой точке молота.

В наиболее наглядном случае, когда центр обращения (вращения) находится за пределами тела, благодаря действию «центробежной силы» (для инерциальных систем отсчёта это не более чем эвфемизм, всё же удобный для иллюстрации действия законов движения Ньютона, но не имеющий физического смысла, поскольку такая сила, действующая на ускоряемое тело для инерциальных систем физике не известна. С другой стороны, понятие центробежной силы существует и вполне обоснованно во вращающейся — неинерциальной — системе отсчёта, каковой, к примеру, является поверхность Земли) периферические точки тела «стремятся» удалиться от центра масс тела, а этот центр «стремится» в свою очередь удалиться от периферических точек, ближе всего расположенных к центру вращения. Таким образом, любое, например сферическое, тело приобретает форму эллипсоида, удлиняясь в обе стороны от траектории движения его центра масс.

Возникающие при этом в теле деформации создают напряжения, препятствующие разлёту частиц тела по касательной, что иногда имеет место, когда возникшие напряжения превысят предел прочностиматериала[1]. Часто в этом случае говорят, что разрушение тела вызвано «центробежной силой». Это — известный эффект пращи. В технике он является одной из причин, вызывающих ограничение скорости движения колёсных транспортных средств.

Попутно следует отметить, что в пользу существования «центробежной силы» якобы говорит общеизвестный факт замедления хода маятниковых часов при их переносе в низкие широты. На первый взгляд, это могло бы быть объяснено тем, что сила тяготения до некоторой степени компенсируется, например, на экваторе направленной в противоположную сторону от центра Земли «центробежной силой», чем и объясняется, якобы, замедление хода часов.

В действительности причина этого эффекта состоит в том, что вращение вместе с Землёй маятника часов, как и вообще любого тела под, на или над земной поверхностью, объясняется действием на него реальной центростремительной силы. Эта сила приводит к тому, что траектория этого тела не является прямой линией, направленной по Первому закону Ньютона по касательной, а окружностью, радиус которой равен расстоянию тела от центра вращения Земли. Таким образом, это тело постоянно падает (по отношению к траектории свободного движения) уже с ускорением, величина которого рассмотрена выше. Следовательно, с таким же ускорением к центру Земли движется и точка подвеса маятника, величина которого вычитается из ускорения свободного падения, обусловленного взаимным притяжением Земли и груза маятника, что и замедляет ход часов, поскольку, согласно Галилею, период колебания маятника обратно пропорционален корню квадратному от реального ускорения, испытываемого маятниковым грузом.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных