Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теоретическая часть. 3. Экспериментальная установка……….…………………………………8




Содержание

 

1. Цель работы………………………………………………………………4

2. Теоретическая часть….………………………………………………….4

3. Экспериментальная установка……….…………………………………8

4. Порядок выполнения работы……………………………………………9

5. Требования к отчету……………………………………………………10

6. Контрольные вопросы………………………………………………….11

Список литературы…..…………………………………………….…..11

 

 

Лабораторная работа № 116

Определение отношения теплоемкостей газа

При постоянном давлении и объеме

Цель работы

Изучение закономерностей изменения параметров состояния газа в различных процессах и определение отношения теплоемкостей воздуха при постоянном давлении и объеме.

 

 

Теоретическая часть

Удельной теплоемкостью вещества называется величина, равная количеству теплоты, которую надо сообщить единице массы этого вещества для увеличения его температуры на один градус, а молярной теплоемкостью – количество теплоты, которое необходимо сообщить одному молю вещества для нагревания его на один градус. Если при передаче телу количества теплоты δ Q его температура увеличится на dT градусов, то по определению удельная теплоемкость С будет равна:

, (2.1)

где m – масса тела, а молярная теплоемкость –

, (2.2)

где ν – количество молей вещества.

Удельная и молярная теплоемкости газов зависят как от природы газа, так и от условий его нагревания. Это непосредственно следует из первого закона термодинамики, согласно которому количество теплоты, переданное системе, равно сумме изменения ее внутренней энергии du и совершенной ею работы δ А над внешними телами:

. (2.3)

 

Изменение внутренней энергии идеального газа однозначно определяется его начальным и конечным состояниями, тогда как совершаемая газом работа зависит от характера происходящего с ним процесса и может быть разной по величине и по знаку. Следовательно, теплоемкость газа для различных процессов будет разной. Однако для конкретного процесса как молярная, так и удельная теплоемкость газа имеет строго определенное значение и является однозначной характеристикой газа в данном процессе.

Нагревание газа при постоянном объеме не сопровождается совершением работы (δ А = 0) и вся теплота идет на изменение его внутренней энергии, которая в соответствии с законом равнораспределения энергии теплового движения по степеням свободы молекул газа при изменении его температуры на dT равно:

, (2.4)

где R – газовая постоянная; а i – сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекул газа. В условиях, с которыми сталкиваются на практике, последнее можно исключить, поскольку колебательное тепловое движение в молекулах возбуждается только при достаточно высоких (больше 1000 К) температурах и полагать i = 3 для одноатомных молекул, i = 5 – для линейных молекул и i =6 – для остальных.

Следуя (2.2), (2.3) и (2.4), получаем, что молярная теплоемкость газа при постоянном объеме равна:

. (2.5)

При нагревании газа на dT градусов при постоянном давлении им будет совершаться работа

 

, (2.6)

и его молярная теплоемкость при постоянном давлении оказывается равной

. (2.7)

Отношение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме называют коэффициентом Пуассона или показателем адиабаты газа:

. (2.8)

 

Из (2.5) и (2.7) следует, что коэффициент Пуассона газа определяется только числом степеней свободы его молекул:

. (2.9)

 

Рассмотрим сосуд, который может через кран сообщаться с атмосферой. Если подкачать в него воздух и подождать до установления теплового равновесия с окружающей средой, то после этого воздух в сосуде будет иметь давление Р 1, превышающее атмосферное давление Р 0 на некоторую величину Δ Р 1, и температуру Т 1, равную температуре окружающей среды Т 0. Если теперь на короткое время открыть кран, то давление в сосуде упадет до атмосферного, а температура понизится до некоторого значения Т 2. При этом часть воздуха из сосуда быстро выйдет, а оставшийся воздух, занимавший в сосуде объем V 1, займет весь объем сосуда V 2, т.е. этот воздух из состояния 1 с параметрами и Т 1 = Т 0 перейдет в состояние 2 с параметрами Р 2 = Р 0, V 2 и Т 2. Этот переход происходит настолько кратковременно, что воздух в сосуде не успевает получить тепло от окружающей среды, поэтому его можно считать адиабатным процессом, подчиняющимся закону Пуассона:

 

или , (2.10)

согласно которому

. (2.11)

После закрытия крана охлажденный вследствие адиабатного расширения воздух в сосуде начнет нагреваться при постоянном объеме за счет притока тепла извне. В итоге он займет состояние 3 с температурой, равной температуре окружающей среды (Т 3= Т 0). При этом давление его повысится до . Для изохорного процесса можно применить закон Шарля:

. (2.12)

Учитывая, что Т 1 = Т 3= Т 0, а Р 2 = Р 0, из уравнений (2.11) и (2.12) имеем:

. (2.13)

 

Логарифмируя это равенство, получаем:

 

, (2.14)

 

откуда . (2.15)

 

Если избыточные давления Δ Р 1 и Δ Р 3 значительно меньше атмосферного Р 0, то «1 и «1. В этом случае можно воспользоваться тем, что при х «1 х и представить уравнение (2.15) в более простом виде:

 

. (2.16)

 

При измерении избыточных давлений с помощью жидкостного U – образного манометра:

 

и , (2.17)

 

где r – плотность жидкости; g – ускорение свободного падения, а H и h – соответствующие Δ Р 1 и Δ Р 3 разности высот уровней жидкости в коленах манометра. Подставляя (2.17) в (2.16), в случае малых избыточных давлений получаем следующую расчетную формулу для γ:

. (2.18)

Рассмотренный метод определения γ был в свое время предложен Клеманом и Дезормом.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных