Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Образование боковых корней

ОРГАНОГРАФИЯ

 

Органография – описание органов живого организма.

Орган – часть организма, дифференцированная морфологически и специализированная функционально. В соответствии с двумя главными функциями: поддержание жизни данного растения и воспроизведение его в ряде последующих поколений – выделяют вегетативные и генеративные (репродуктивные) органы.

Вначале мы будем изучать вегетативные органы, образующие систему побега и корневую систему. Элементом корневой системы является корень.

Корень

Корень эволюционно возник позже побега и происходит от ризоидов первых наземных растений – риниофитов.

Разные части корня выполняют неодинаковые функции и характеризуются определенными морфологическими особенностями. Эти части получили название зон. Зоны молодого корня: зона деления, зона роста или растяжения, зона поглощения или всасывания и зона проведения.

Снаружи апикальная меристема прикрыта корневым чехликом. Живые паренхимные клетки чехлика продуцируют слизь. Слизистое вещество представляет собой сильно гидратированный полисахарид пектиновой природы. Он накапливается в пузырьках диктиосом, которые, сливаясь с плазмолеммой, высвобождают его в пространство между плазмолеммой и клеточной оболочкой. Затем слизь выходит на поверхность клеточной оболочки, где и образует мелкие капли.

Благодаря такому слизистому покрытию частички почвы прилипают к кончику корня и корневым волоскам. Слизь служит в качестве абсорбирующей поверхности, которая осуществляет обмен ионов. Слизистое покрытие охраняет кончик корня от вредных веществ почвы и от высыхания, создает благоприятные условия для поселения полезных бактерий.

По мере роста корня и проталкивания корневого чехлика вперед клетки на периферии чехлика слущиваются. Продолжительность жизни клеток от возникновения до слущивания составляет 4-9 дней в зависимости от длины чехлика и вида растения.

Корневой чехлик контролирует георецепцию корня. Место восприятия гравитации в чехлике – центральная колонка клеток – колумелла, в которой амилопласты действуют как статолиты (рецепторы гравитации).

Апикальная меристема состоит из мелких (10 – 20 мкм в диаметре) многогранных клеток с густой цитоплазмой и крупными ядрами.

У споровых растений моноинициальный тип апекса корня.

В корнях семенных растений описаны два основных типа апикальной организации. В одном из них все области имеют общие инициали. Это открытый тип апикальной меристемы, который, вероятно, является филогенетически примитивным. Во втором типе каждая из трех частей, т.е. центральный (или проводящий) цилиндр, первичная кора и корневой чехлик, имеют свои собственные инициали. Это закрытый тип апикальной меристемы.

Инициали, ответственные за организацию клеточного роста на первых стадиях, в основном утрачивают митотическую активность на последующих стадиях роста корня. Вместо них митотическую активность проявляют клетки, расположенные несколько глубже в теле корня. Эти наблюдения послужили поводом для формирования теории покоящегося центра в апикальной меристеме. Согласно этой теории, самые дистальные клетки (дистальный – наиболее удаленная от центральной точки часть органа: нижний конец корня) в теле корня (первые инициали плеромы и периблемы) делятся редко, имеют примерно одинаковые размеры и низкие скорости синтеза НК и белка. Покоящийся центр имеет полусферическую или дисковидную форму, варьирует в объеме в зависимости от размера корня. Клетки покоящегося центра делятся приблизительно в 10 раз медленнее, чем соседние клетки.

В корнях, эспериментально поврежденных, покоящийся центр способен восстанавливать меристему. Т.е., покоящийся центр играет существенную роль в формировании структуры и в развитии корня.

Особенностью кончика корня является размещение продольных рядов клеток, берущих начало в апикальной меристеме.

Слои апикальной меристемы корня:

Дерматоген (греч. derma – кожица, genos – рождение) – наружный слой верхушечной меристемы, дифференцируется в ризодерму. Клетки дерматогена правильной формы.

Плерома (греч. pleroma – заполнение) – центральная часть верхушечной меристемы, дифференцируется в клетки центрального цилиндра. Клетки вытянуты по оси.

Периблема (греч. periblema – покров) – слой верхушечной меристемы между дерматогеном и плеромой, дифференцируется в клетки первичной коры.

Первичная кора дифференцируется на уровне зоны растяжения. В зоне полгощения на долю первичной коры приходится большая часть поперечного сечения. Называется "первичной" благодаря происхождению из первичной меристемы, "корой" – благодаря периферическому расположению.

Наружные клетки первичной коры, расположенные под ризодермой, называются экзодермой. Внутренний слой первичной коры – эндодерма.

Основная масса первичной коры – мезодерма. Мезодерма образована паренхимными клетками, расположенными рыхло, что способствует аэрации клеток корня.

Корни голосеменных и большинства двудольных рано сбрасывают первичную кору. У них клетки первичной коры остаются паренхиматозными. В противоположность этому первичная кора однодольных сохраняется на протяжении всей жизни корня, и ее клетки образуют вторичные лигнифицированные оболочки.

Центр корня занимает осевой цилиндр – стела. Начинает дифференцироваться в зоне роста. Формирование осевого цилиндра начинается с образования наружного его слоя - перицикла. Перицикл относится к первичным латеральным меристемам, клетки его долго сохраняют меристематическую активность. Обычно перицикл представлен одним слоем клеток, хотя бывает и многослойным.

У большинства семенных растений в перицикле закладываются боковые корни, возникают зачатки придаточных почек. У видов со вторичным ростом перицикл участвует в формировании камбия и дает начало первому слою феллогена.

Под перициклом закладываются клетки прокамбия, которые дают начало первичной флоэме, позднее – первичной ксилеме. Количество лучей ксилемы варьирует у разных видов от двух, трех, четырех до нескольких. Соответственно количеству лучей ксилемы корни называют диархными, триархными, тетрархными, полиархными. Первичными считаются тетрархные корни. У однодольных – полиархная стела.

Таким образом, общий план первичного строения корня и морфологическая дифференциация тканей показывают высокую ступень специализации и приспособления корня к функциям всасывания и проведения воды и минеральных веществ.

Образование боковых корней

Боковые корни возникают на периферии центрального цилиндра на разных расстояниях от апикальной меристемы. Т.к. закладываются они в глубоко расположенных тканях корня, их происхождение называют эндогенным (с греч. "рождающийся внутри"). Боковые корни голосеменных и покрытосеменных закладываются в перицикле. Клетки перицикла, участвующие в образовании боковых корней, - корнеродная дуга.

Несколько слоев клеток корневого примордия может образовать и эндодерма.

В диархном корне боковой корень закладывается между флоэмой и ксилемой, в триархном, тетрархном – напротив ксилемы, в полиархном корне однодольных – напротив флоэмы. Клетки перицикла делятся в различных направлениях. В результате чего формируется небольшой корневой бугорок. Увеличиваясь в размерах, зачаток корня давит на эндодерму. Но оболочки эндодермы твердые. Поэтому эндодерма выпячивается. Выпуклость эндодермы называется корневым кармашком.

Примордий корня проходит через первичную кору, секретируя при этом ферменты, разрушающие клетки коры на своем пути. На ранних стадиях развития этот зачаток формирует корневой чехлик, апикальную и первичные меристемы. Со временем за счет дифференциации паренхимных клеток в элементы ксилемы и флоэмы центральные цилиндры бокового и родительского корня соединяются между собой.

У однодольных первичная структура корня сохраняется на протяжении всей жизни и вторичные ткани не возникают. С возрастом могут увеличиваться размеры клеток, утолщаться клеточные оболочки, но общий "план" строения корня остается неизменным.

У голосеменных и двудольных происходят вторичные изменения, и формируется вторичная структура корня. Образование вторичной структуры корня связано прежде всего с деятельностью камбия. Камбий образуется путем деления тех прокамбиальных клеток, которые остаются недифференцированными между первичной флоэмой и первичной ксилемой. Затем клетки перицикла, локализованные снаружи от выступов ксилемы, также проявляют камбиальную активность.

Камбий откладывает к центру клетки вторичной ксилемы, к периферии – клетки вторичной флоэмы. Так образуются проводящие пучки. Их образуется столько, сколько было лучей первичной ксилемы. Под давлением нарастающих вторичных тканей клетки первичной флоэмы расплющиваются. Первичная ксилема сохраняет центральное положение и видна в виде звездочки. Со временем облитерируется и первичная ксилема.

При вторичном строении корня первичные ткани не функционируют как проводящие элементы. Ток веществ в обоих направлениях осуществляется по вторичным тканям.

Камбий, который берет начало в перицикле, образует широкие паренхимные лучи, которые размещаются между открытых коллатеральных пучков. Это первичные сердцевинные лучи. Они обеспечивают физиологическую связь центральной части корня с первичной корой. Позднее могут закладываться более узкие вторичные сердцевинные лучи, соединяющие вторичную ксилему и флоэму.

Вторичные изменения происходят не только в центральном цилиндре. Из-за нарастания в толщину проводящих тканей первичная кора отодвигается наружу, разрывается и сбрасывается вместе с эндодермой.

В наружной части перицикла берет начало феллоген и откладывает наружу феллему, а внутрь – многослойную феллодерму. Таким образом, корни двудольных, имеющих вторичное строение, покрыты перидермой.

В многолетних корнях феллоген возникает в глубине корня. Тогда корень, как и стебель, образует ритидом.

Важный экологический аспект вторичного роста корня представляет собой способность корней различных растений одного и того же вида к естественному срастанию. Там, где корни приходят в контакт один с другим, они объединяются благодаря вторичному росту. При срастании корней устанавливается непрерывность проводящей системы между обоими сросшимися партнерами. Благодаря срастанию корней многие деревья оказываются взаимосвязанными, и если некоторые из них вырубаются, то пни еще долго остаются живыми. Срастание корней способствует быстрой передаче инфекции от одного дерева к другому.

Дифференциация корней в корневых системах проявляется в разных формах. Наибольшее значение имеет дифференциация на главные, боковые и придаточные корни.

В особую группу выделяют корни, возникающие в апикальных меристемах высших споровых растений. Предполагают, что они являются самой архаичной группой корней и сохранили наибольшее сходство с первичными корнями, которые входили в состав единой системы ветвления надземных и подземных осей. Корни, входящие в эту группу, называют апицигенными.

Основываясь на последовательности возникновения корневых систем в процессе эволюции и принадлежности к крупным систематическим группам, можно наметить три эволюционных уровня корневых систем.

I. Корневые системы высших споровых представлены исключительно системами апицигенных корней, последовательно сменяющимися друг друга, что и является основным механизмом обновления в корневых системах. Ветвление верхушечное или боковое, причем не исключено, что оба типа ветвления возникли независимо друг от друга. Нет метаморфозов и корней с узкой специализацией.

П. Корневая система голосеменных отличается наличием главного корня, что можно связать с появлением семени и биполярного зародыша с зародышевым корешком. В механизм обновления включились не только боковые корни подчиненных порядков, но и ризогенные придаточные корни (т.е. придаточные корни на корнях, придаточные корни на побегах не получили у голосеменных заметного развития). Специализированные и метаморфизированные корни единичны.

Ш. Корневая система покрытосеменных характеризуется сильным развитием придаточных корней, а также метаморфозов и корней с узкой специализацией. Механизмы обновления разнообразны и эффективны.

Метаморфозы корневых систем

Метаморфозы корневых систем – это совокупность анатомических и морфологических признаков, выработанных филогенетически и наследственно закрепленных и вызванных изменением физиологических функций. Метаморфоз (metamorphosis, греч. – превращение) – результат изменений, которые происходят на генетическом уровне и которые приводят к морфологическим и функциональным перестройкам органа, системы органов или организма в целом.

I. Метаморфозы, связанные с выполнением нетипичных функций:

1) дыхательные корни;

2) воздушные корни эпифитов;

3) ходульные корни;

4) корни подпорки.

П. Метаморфозы, связанные с гиперфункционированием:

1) корнеплоды;

2) корневые шишки;

3) корневые клубеньки;

4) микориза.

Корнеплоды характерны для двулетних двудольных растений. Это условное название. Развиваются из вегетативных органов и никакого отношения к плодам не имеют. В образовании корнеплода принимают участие нижняя часть стебля и корень.

В первый год жизни растение вегетирует, образуется корнеплод. На второй год формируются цветки, плоды, семена. Значит, корнеплод является органом запаса веществ, что позволяет растению перенести период покоя и завершить развитие на следующий год.

Типы корнеплодов:

1.Монокамбиальный.

Исходным является корень с диархным осевым цилиндром. Образование корнеплода начинается со вторичных изменений, связанных с заложением и работой одного камбиального кольца и дальнейшей паренхиматизацией.

Мы знаем, что камбий во внутрь откладывает вторичную ксилему, наружу – вторичную флоэму. Анатомические отличия касаются места развития запасающей ткани. Если сильное развитие паренхимы происходит во флоэме, образуется флоэмный тип корнеплода – тип морковь. Если в ксилеме – ксилемный тип – тип репа.

2.Поликамбиальный тип корнеплодов.

Закладывается одно типичное камбиальное кольцо, остальные – дополнительные перициклического происхождения. Их может быть до 25. Эти дополнительные кольца камбия образуют открытые коллатеральные проводящие пучки. Чем дальше кольцо от первого камбиального кольца, тем больше запасающей паренхимы оно продуцирует. Пример поликамбиального корнеплода – свекла.

В моно – и поликамбиальных корнеплодах первичная кора рано отмирает и слущивается. Покровной тканью служит перидерма.

Таким образом, общим признаком всех корнеплодов является наличие большого количества запасающей паренхимы, пронизанной проводящими тканями. Тесная связь между проводящими тканями и запасающими достигается благодаря разнообразным модификациям вторичного роста.

У некоторых растений запасающие корни формируются из боковых и придаточных корней в виде корневых шишек. Корневые шишки однодольных (любка) бескамбиальные, имеют первичное строение; двудольных - камбиальные, имеют вторичное строение. Пример: корневые шишки георгина флоэмного типа.

Корневые шишки по всей поверхности образуют придаточные корни, а в верхней части – придаточные почки и поэтому являются органами вегетативного размножения.

Известно, что рост растений чаще всего лимитирует недостаточное обеспечение их фиксированным азотом. Азот в форме стабильной молекулы N2 составляет 80% атмосферы. Перед фиксацией (восстановлением N2 до аммиака NH3) эта молекула должна расщепиться. Фиксация азота осуществляется некоторыми свободноживущими бактериями, которые употребляют органическое вещество почвы. Некоторые бактерии поселяются на корнях высших растений. Растение "привлекает" бактерии при помощи органических корневых выделений. А микроорганизмы в свою очередь обеспечивают растение фиксированным азотом. Такая взаимополезная ассоциация двух организмов называется симбиозом. Чаще всего корни образуют ассоциации с азотфиксирующими бактериями рода Rhizobium. Более 60 семейств двудольных и однодольных растений способны вступать в симбиоз с бактериями. Каждый вид растения имеет собственный симбиотический Rhizobium. Взаимное узнавание растения и бактерии осуществляется путем прикрепления особого белка – лектина, находящегося на поверхности трихобластов, к специфической бактерии. Корневые волоски под влиянием выделяемых бактериями ростовых гормонов деформируются. Бактерии проникают внутрь этих искривленных клеток. Внутри клеток бактерии размножаются, образуя инфекционную нить, заключенную в футляр из камеди. Эта нить проникает глубоко в корень. Результатом такого проникновения бактерий является сильное разрастание клеток мезодермы корня, что приводит к образованию клубеньков. Самая наружная часть клубенька долго остается меристематической зоной, а бактерии размещаются во внутренней части клубенька. Сама бактериальная ткань представлена мелкими клетками с вязкой цитоплазмой и огромным количеством бактерий. Бактериальная ткань окружена проводящими пучками, которые связаны с центральным цилиндром корня. Т.е. существует система транспорта для обмена питательными веществами между бактериями и растениями. Азотфиксирующие бактерии оказывают благоприятное воздействие и на азотное питание растений, и на почвенное плодородие.

Физиологическая активность корня, связанная с обеспечением растения водой и минеральными веществами, может усиливаться путем его симбиотической ассоциации со специфическим грибом. Такой тесный взаимополезный симбиоз корней и грибов и есть микориза. Микориза известна у большинства сосудистых растений. Всего несколько семейств цветковых не образуют ее или образуют редко, например, капустные, осоковые.

Микоризные грибы играют ключевую роль в минеральном питании сосудистых растений. Значительная роль микоризы в поглощении и переносе фосфора.

При двустороннем транспорте (перемещении фосфатов от грибов к растениям и углеводов в обратном направлении) потеря и поглощение происходят в апопластической зоне между плазматическими мембранами растения и гриба.

Микоризные грибы используют те источники Р, которые обычно не доступны растениям. Микориза способствует также поглощению растениями Zn, Mn, Cu. Эти элементы в почве слабоподвижны, и поэтому вокруг корневых волосков быстро образуются обедненные ими зоны. Сеть гифов микоризных грибов распространяется на несколько сантиметров от каждого корня и тем самым увеличивает поверхность поглощения корней.

Грибы – микоризообразователи положительно влияют на водный режим растения, что обусловлено способностью гриба поглощать воду с относительно сухой почвы. Микоризы препятствуют заражению корней паразитическими грибами и бактериями.

Различают следующие типы микоризы:

1)эктомикоризы: гриб покрывает весь кончик корня густым чехлом и проникает в межклетники;

2)эндомикоризы: гриб внедряется внутрь клеток.

Эктомикориза характерна для определенных семейств деревьев и кустарников (сосновые, ивовые, буковые). Формируется эктомикориза на молодых, еще не опробковевших корнях. Эктомикоризные корни короткие, разветвленные и выглядят разбухшими.

У таких корней развитие корневых волосков подавлено и объем апикальной меристемы и корневого чехлика может быть уменьшен. Функцию корневых волосков выполняют гифы.

Эндомикоризные корни по форме похожи с обычными корнями, но отличаются от них более темной окраской. Грибные гифы проникают в клетки коры корня, где образуют везикулы (вздутия) и арбускулы (древовидные разветвления). Поэтому эндомикоризу часто называют везикулярно-арбускулярной. В определенных условиях гифы гриба могут "перевариваться" клетками. Корневые волоски на корнях сохраняются. Это наиболее распространенный тип микоризы. Встречается приблизительно у 80% всех сосудистых растений, а именно у травянистых растений, включая зерновые; у кустарников, деревьев (яблони, клены…). У молодого растения тополя, например, формируется везикулярно-арбускулярная эндомикориза, а по мере старения – чехольчатая эктомикориза.

Для вересковых Ericaceae характерна эрикоидно-арбутоидная микориза. Гриб вокруг корня образует мощное скопление гифов, а тонкие боковые гифы проникают в клетки коры корня. Эти микоризные грибы значительно снижают токсичность почв для вересковых, что позволяет этим растениям поселяться на кислых, бедных питательными веществами почвах.

Встречается еще один тип – эндомикориза орхидных. Семена орхидных в природе прорастают только при наличии соответствующих грибов.

Вообще в природных условиях микоризные ассоциации скорее являются правилом, чем исключением.

Исследование остатков древнейших сосудистых растений показало, что эндомикориза встречалась у них не реже, чем у современных растений. Это дало возможность допустить, что возникновение микоризы в процессе эволюции могло быть одним из факторов, позволившим растениям заселить сушу. Учитывая слабое развитие почвы во время этого заселения, можно допустить, что микоризные грибы были основой минерального питания растений. Современные растения-пионеры с микоризой имеют больше шансов на выживание на бедных почвах.

Растения с микотрофным типом питания более устойчивы к наличию тяжелых металлов в окружающей техногенной среде.

 

Несколько слов о корнях растений влажного тропического леса. Более распространены, чем ходульные, досковидные опорные корни. Корни напоминают доски, прислоненные верхними концами к дереву. В то время как ходульные корни являются придаточными корнями, которые возникают на стволе и растут вниз, образование досковидных корней связано с боковыми корнями, растущими непосредственно под поверхностью почвы. Боковые корни развивают вертикальные выросты, треугольные в поперечном сечении, которые прилегают к стволу дерева.

Древесина досковидных корней часто тверже, чем остальная древесина того же дерева, и нередко они бывают покрыты тонким слоем коры. Судя по кольцам прироста, видным на поперечном разрезе этих корней, вначале это нормальные, округлые в сечении корни, но затем они развивают очень сильное утолщение на верхней стороне. Количество досковидных корней у дерева варьирует от 1 до 10, но в большинстве случаев их три или более. В тропиках образование досковидных корней особенно заметно у деревьев, растущих в болотистых лесах и на плохо дренированных почвах. Нередко досковидные корни используют для промышленных целей. Так, досковидные корни произрастающего в Индонезии дерева Koompassia excelsa идут на изготовление обеденных столов.

ПОБЕГ

 

Побег, как и корень, является основным вегетативным органом растения. Побег выполняет функцию воздушного питания, может выполнять и ряд других функций и способен к метаморфозам.

Вегетативный невидоизмененный побег состоит из осевой части – стебля; листьев и почек. Главная внешняя черта, отличающая побег от корня, - это олиственность побега.

Участок стебля, который связан с возникновением боковых органов (ветвей, листьев и пр.) – узел. Участок стебля между соседними узлами – междоузлия. Внутренний угол между листом и стеблем – пазуха листа. Каждый повторяющийся элемент побега (узел с листом и почкой в пазухе листа и междоузлие) образует метамер. Побег, таким образом, состоит из серии метамеров, т.е. имеет метамерное строение.

В начале 90-х годов XX века американскими учеными вместо понятий узла и междоузлия для анализа роста и дифференциации растения было предложено понятие – стеблевой элемент. Стеблевой элемент – это участок стебля между краями листовых примордиев. Выявляется на апексе побега, где еще нет междоузлия. Т.е. новое понятие "стеблевой элемент" соответствует понятию "метамер".

Строение апикальной меристемы побега сложней, чем в корне. Ведь в побеге апикальная меристема не только образует клетки первичных тканей, но и участвует в формировании примордиев листьев и пазушных почек, развивающихся затем в боковые побеги. Эта меристема не защищена структурой, подобной корневому чехлику.

Типы апексов такие же, как и в корне: моноинициальный, зональный, ярусный. Количество ярусов больше, чем в корне.

Эволюционно примитивный моноинициальный апекс. Пример такого типа апекса у хвощей. Одиночная крупная вытянутая апикальная клетка сильно вакуолизирована. Делится в направлениях, параллельных своим поверхностям (за исключением самой наружной поверхности). Ближайшие производные клетки также сильно вакуолизированы, но по мере их деления возникают мелкие клетки с густыми протопластами. Такие клетки обнаружены по периферии верхушки стебля, где закладываются листовые зачатки.

Вегетативный апекс побега большинства цветковых построен по типу туники – корпуса – двух зон, отличающихся плоскостями клеточных делений. Туника (лат. - оболочка) включает наружные слои клеток, делящихся антиклинально (перпендикулярно к поверхности) и обеспечивающих увеличение поверхности. Корпус (лат. – тело) – центральная группа клеток под туникой, делятся в разных плоскостях, образуя основной объем побега. Корпус и каждый слой туники имеют свои собственные инициали. В тунике инициали размещаются в центре по оси. Двудольные имеют в основном двуслойную тунику, однодольные – однослойную, реже двуслойную.

В то время как концепция туники – корпуса способствует нашему пониманию расположения и роста клеток в самой апикальной меристеме, распознавание различных по характеру зон клеток в прилегающих к ней областях помогает выявить вклад меристемы в дифференциацию тканей и органов в побеге. Наличие в апикальной меристеме зон, имеющих различные цитологические характеристики, есть цитогистологическая зональность.

Корпус соответствует области клеток, называемой зоной центральных материнских клеток. Клетки этой зоны сильно вакуолизированы – черта, связанная с относительно низкой скоростью митотической активности. Зона центральных материнских клеток окружена периферической меристемой, возникающей частично из туники, частично из корпуса. С наружного слоя туники берет начало гистоген протодерма. Периферическая меристема происходит из латеральных производных апикальных инициалей и из центральных материнских клеток. Сердцевинная меристема формируется в результате делений по периферии центральных материнских клеток в слое, называемом переходной зоной. Клетки периферической зоны имеют густые протопласты, следовательно, обладают высокой митотической активностью.

В определенных местах с особенно высокой активностью закладываются листовые бугорки (или первичные бугорки).

Возникновение нового листового примордия связано с изменением направления делений клеток, которому предшествует изменение ориентации микротрубочек в периферических слоях цитоплазмы. Осмотическое давление также влияет на рост примордия.

В период активного роста апикальная меристема побега образует листовые примордии так быстро, что узлы и междоузлия вначале не отличаются. Постепенно участки между ярусами листьев начинают расти, вытягиваться и приобретают вид междоузлий. В то же время области прикрепления листьев оформляются в узлы.

Ниже, где появляются зачатки листьев, наблюдается вакуолизация. Это указывает на начало дифференциации первичной коры и сердцевины. Сильная вакуолизация в первичной коре и сердцевине свидетельствует о наличии меристематической зоны, называемой остаточной меристемой. Она выглядит так, как если бы была остатком апикальной меристемы, сохранившимся среди более дифференцированных тканей. Ниже места закладки листового зачатка в остаточной меристеме путем продольных делений, без последующего разрастания клеток в ширину, образуются несколько вытянутые клетки первого прокамбия.

На следующих стадиях развития в остаточной меристеме дифференцируется все больше прокамбиальных тяжей. После того, как сформировались все проводящие пучки данного уровня стебля, остаточная меристема дифференцируется в межпучковую паренхиму. В узлах часть остаточной меристемы становится паренхимой листовой щели.

Прокамбий может закладываться сплошным кольцом или отдельными тяжами. Если прокамбий залегает сплошным кольцом, формируется беспучковый (непучковый) тип строения стебля. Если прокамбий закладывается отдельными тяжами, образуется пучковый тип строения стебля. Поэтому в стебле по разному размещаются первичные проводящие ткани: в первом случае сплошным кольцом, во втором – отдельными проводящими пучками, разделенными участками основной паренхимы – сердцевинными лучами.

В коллатеральных проводящих пучках первичная флоэма появляется во внешней части прокамбиального тяжа, первичная ксилема – во внутренней. Последующая дифференциация флоэмы происходит центростремительно: новые элементы флоэмы появляются ближе к центру стебля. Ксилема дифференцируется в противоположном направлении – центробежно.

Вся стела, или центральная часть стебля состоит из проводящих тканей, сердцевины (иногда она разрушается), перицикла. Наружу от перицикла размещается первичная кора. В состав первичной коры (а образуется она их периферической меристемы) входит хлоренхима, иногда секреторные элементы. Самый наружный слой периферической меристемы не образует экзодерму, как в корне, а дифференцируется в колленхиму, которая залегает или в виде тяжей или сплошным кольцом (в зависимости от типа строения стебля: пучковый или беспучковый). Самый внутренний слой первичной коры – эндодерма. Но в стебле она не выполняет регулирующей функции, как в корне. В эндодерме откладываются крахмальные зерна, и поэтому ее называют крахмалоносным влагалищем. Иногда в ней есть кристаллы оксалата кальция.

Перицикл быстро теряет меристематическую активность и преобразуется в склеренхиму, залегающую сплошным слоем или тяжами в зависимости от типа строения стебля.

Сердцевина представлена тонкостенными паренхимными клетками, в которых откладываются запасные питательные вещества. Здесь встречаются клетки-идиобласты, заполненные кристаллами, слизями и т.д. Периферическая часть сердцевины называется перимедуллярной зоной (греч. peri – вокруг, medulla – сердцевина). Клетки перимедуллярной зоны более мелкие, долго сохраняют свою жизнедеятельность.

У однодольных исходным является пучковый тип строения стебля, т.е. прокамбий залегает тяжами. Но вторичная меристема – камбий – никогда не возникает, и поэтому отсутствуют вторичные проводящие ткани. Даже при утолщении стебель образован только первичными тканями. Толстый стебель однодольных (пальмы, алоэ) развивается благодаря делению и растяжению клеток основной паренхимы. Такой рост называется диффузным вторичным ростом.

У однодольных первичная кора и центральный цилиндр не разделены четкой границей, как у двудольных, и стела подступает под эпидермис.

Для однодольных характерен диффузный тип строения стебля, когда закрытые проводящие пучки рассеяны по всему стеблю. В процессе удлинения междоузлий первичные элементы флоэмы и ксилемы (протофлоэма и протоксилема) растягиваются и разрушаются, в результате чего с ксилемной стороны пучка образуется крупная воздухоносная полость. Поэтому на лабораторных занятиях, когда мы смотрели типы пучков, на постоянном препарате поперечного среза стебля кукурузы было видно, что зрелый проводящий пучок включал два широких сосуда метаксилемы, воздушную полость, метафлоэму. Каждый пучок заключен в обкладку из склеренхимных клеток.

У однодольных часто отмирает сердцевина стебля и на ее месте образуется полость. Такой полый стебель с хорошо выраженными узлами называется соломиной. Соломина характеризуется сильным развитием механической ткани, которая образует кольцо на периферии стебля. У зрелых растений хлоренхима разрушается, и соломина приобретает золотисто-желтую окраску, свойственную склеренхиме. Вообще для однодольных характерна сильная склерификация стебля, когда до 30% всех тканей приходится на склеренхиму и может быть частичная лигнификация оболочек живых паренхимных клеток.

В стебле двудольных вторичный рост является результатом деятельности камбия. Камбий появляется в конце первого года роста побега и способствует утолщению стебля. Камбий возникает частично из прокамбия в проводящих пучках, а частично из межпучковой паренхимы. В зависимости от места образования участки камбия называются пучковым и межпучковым камбием. Будущие камбиальные клетки в межпучковых зонах детерминированы задолго до начала камбиальной деятельности. Камбий образуется сначала в клетках, прилегающих к пучку, затем распространяется вглубь сердцевинного луча. В результате межпучковый и пучковый камбий образуют в стебле сплошное камбиальное кольцо.

Различают три типа вторичного роста:

1) тип кирказон Aristolochia.

Исходным является пучковый тип строения стебля. Первичные проводящие пучки разделены широкими сердцевинными лучами. Пучковый камбий образует вторичные проводящие ткани, межпучковый – лучевую паренхиму. Такое пучковое строение сохраняется.

2) тип подсолнечник Helianthus.

Так же исходным является пучковый тип строения. Но вторичные проводящие ткани образуются как пучковым, так и межпучковым камбием. Вторичные проводящие пучки, образованые межпучковым камбием, отличаются от первичных меньшими размерами и отсутствием над пучком механической ткани перициклического происхождения. При продолжительном действии камбия вторичных пучков становится все больше. Они разрастаются, сливаются между собой, образуя сплошное кольцо вторичных проводящих тканей.

3) тип липа Tilia.

Исходным является беспучковый тип строения стебля. Общее камбиальное кольцо образует вторичные проводящие ткани. Но время от времени камбий формирует паренхимные клетки, которые в дальнейшем дифференцируются во вторичные лучи.

 

Строение стебля многолетних растений

 

У древесных и кустарниковых двудольных, а также у хвойных вторичные утолщения продолжаются много лет, и стволы у некоторых видов достигают несколько метров в диаметре. Утолщения связаны с деятельностью длительно функционирующего камбия и отчасти феллогена – двух вторичных боковых меристем. Топографически в стебле многолетнего древесного растения можно выделить три основных части: кору, древесину и сердцевину. Граница коры и древесины проходит по камбию.

Клетки камбия, в отличие от типичных меристематических клеток, всегда сильно вакуолизированы. Состояние цитоплазмы клеток камбия изменяется по сезонам.

В камбиальной зоне или камбиальном кольце встречаются две формы клеток камбия: вытянутые в вертикальном направлении веретеновидные клетки (инициали) и вытянутые в горизонтальном направлении шаровидные клетки – лучевые инициали. Если веретеновидные клетки размещаются правильными горизонтальными рядами, камбий называют ярусным. Если такого порядка в размещении веретеновидных клеток нет – камбий неярусный.

Ярусный камбий дает начало ярусной древесине и ярусной вторичной флоэме. Из неярусного камбия возникает неярусная древесина и неярусная вторичная флоэма. В эволюционном плане ярусные древесины и флоэмы считаются более высокоспециализированные, чем неярусные.

С утолщением стебля увеличивается и окружность слоев камбия. Это возможно благодаря делению камбиальных клеток в радиальном направлении.

Среди камбиальных клеток выделяют средний инициальный слой. Клетки его в результате деления формируют производные во внутреннем, а затем во внешнем направлении. За одинаковый промежуток времени во внутрь откладывается 2-3 клетки, а во внешнем направлении – только одна клетка. В результате древесины формируется больше, чем луба.

Лучевые клетки (инициали) образуют сердцевинные паренхимные лучи: первичные, которые тянутся от сердцевины к коре; и вторичные сердцевинные лучи более короткие, т.к. возникают из лучевых клеток, возникших позже.

Сердцевинные лучи могут быть однорядные и многорядные; гомогенные (т.е. состоящие из одинаковых клеток) и гетерогенные (в состав луча входят клетки, разные по строению).

Значение сердцевинных лучей: это место запасания питательных веществ (крахмала, липидов), что играет роль в период покоя (например, зимой).

Сердцевинные лучи обеспечивают радиальный перенос воды и минеральных солей из ксилемы по апопласту к камбию и вторичной флоэме, а в обратном направлении по симпласту питательных веществ.

И, наконец, по межклетникам осуществляется газообмен.

 

Древесина

Древесина образуется камбием и нарастает в центробежном направлении. Т.к. в нашей зоне камбий работает периодически: начинает функционировать рано весной и прекращает деятельность в конце лета, то в древесине видна концентрическая слоистость. Весной, в начале вегетационного периода, образуется ранняя древесина. Ее сосуды широкие, тонкостенные, способные проводить значительное количество воды. Вода необходима для инициации роста, особенно для увеличения в размерах новых клеток (например, клеток развивающихся листьев). Поздняя древесина содержит меньше сосудов. Они более узкие, толстостенные. Переход от ранней к поздней древесине того же года может быть постепенным. Однако граница поздней древесины одного года с ранней древесиной следующего года всегда резкая и хорошо видна на поперечном срезе. В результате образуется годовой прирост (годичное кольцо или годичный слой).

По размещению сосудов в годовом (годичном) приросте различают следующие виды древесины.

Если сосуды располагаются в основном в ранней древесине, а в поздней они отсутствуют или размещаются только мелкие сосуды, как, например, древесина дуба, ясеня, - это кольцесосудистая древесина.

Если сосуды располагаются равномерно по всему годовому приросту, хотя диаметр их в поздней древесине уменьшается, - это рассеянососудистая древесина. Встречается у березы, клена, тополя.

Есть и переходные формы между этими видами древесины.

Поскольку древесина выполняет проводящую, механическую и запасающую функции, то и в ее состав входят кроме элементов ксилемы механическая ткань в виде склеренхимы и запасающая в виде основной паренхимы. Строение всех анатомических элементов, их количество, размещение придают древесине разных растений специфические особенности, характерные для определенной таксономической группы.

Например, у более подвинутых в эволюционном плане растений есть специализированная механическая ткань (склеренхима). Примитивные в эволюционном плане двудольные (магнолиевые) не имеют древесинных волокон. Механическую роль в этом случае выполняют трахеиды.

В древесине некоторых растений есть переходные формы от трахеид к либриформу (либриформ - специализированные механические элементы древесины, состоящие из прозенхимных, заостренных на концах клеток с толстыми одревесневевшими оболочками). Встречается и перегородчатый либриформ. Его исходная веретеновидная клетка с толстыми вертикальными оболочками разделена поперек на отдельные короткие живые клетки. Такие гистологические элементы морфологически и функционально приближаются к древесной паренхиме.

Древесная паренхима выполняет запасающую и частично проводящую роль. Клетки паренхимы живые. Размещается древесная паренхима горизонтальными и вертикальными рядами. Горизонтальные ряды образуют сердцевинные лучи. Их особенности мы уже рассмотрели. Вертикальные ряды образуют саму древесную паренхиму.

Если древесная паренхима рассеяна по всему годовому приросту, это диффузная паренхима. Характерна для древесины липы, дуба, груши.

Если древесная паренхима размещается вокруг сосудов, это паратрахеальная паренхима. В древесине ясеня, клена.

По внешней границе годового прироста располагается терминальная паренхима. Пример: древесина ивы, лиственницы, магнолии.

Древесина голосеменных растений

Особенность ее строения – это отсутствие сосудов. Трахеальные элементы неперфорированы и представлены трахеидами, выполняющими и проводящую и механическую роль.

Для трахеид хвойных характерны крупные окаймленные поры с торусом. Трахеиды длинные с заостренными концами. Ранние трахеиды крупные, тонкостенные. Поздние трахеиды сплющены в радиальном направлении, толстостенные.

У сосен паренхимные клетки связаны со смоляными ходами. Горизонтальные смоляные ходы сердцевинных лучей связаны с вертикальными смоляными ходами, в результате чего создается единая смоловыделительная система. Смола защищает растение от поражения грибами-паразитами и жуками-короедами.

Мы видим, что древесина голосеменных и двудольных растений имеет существенные структурные отличия. Поэтому ее разделяют на две основные группы. Древесину голосеменных относят к мягким, а древесину двудольных – к твердым древесинам. Эти термины "твердая" и "мягкая" не обязательно сводятся только к степени плотности и твердости. Различия связаны, как мы уже сказали, со структурными особенностями.

В наклонных или изогнутых стволах возникает реактивная древесина. Ее образование вызвано тенденцией ветвей и стволов противодействовать нагрузкам, возникающим при наклонном положении, т.е. ее образование связано с процессом выпрямления этих частей растения.

Наиболее важными факторами, обусловливающими развитие реактивной древесины, являются гравитационные силы и распределение эндогенных стимуляторов роста.

Реактивная древесина отличается от обычной и анатомически и химически. Клетки реактивной древесины подвергаются в большей мере лигнификации и утолщению оболочки. У хвойных она более плотная и темная, чем окружающая ткань. Ее трахеиды короче, чем трахеиды нормальной древесины.

Радиоактивность стволовой древесины уменьшается от наружных слоев к сердцевине. Происходит некоторое увеличение загрязненности древесины от основания ствола к вершине.

Достаточно высокое содержание радиоактивных веществ в коре и побегах свидетельствует об их внешнем аэральном загрязнении.

 

Кора

Этот термин объединяет все ткани снаружи от камбия. Это уже вторичная кора, т.к. образуется вторичной меристемой – камбием (в отличие от первичной, которая формируется при дифференциации клеток первичной меристемы).

В состав вторичной коры входят вторичная флоэма, склеренхима (лубяные волокна и каменистые клетки), основная паренхима. Совокупность механических элементов называют твердым лубом, проводящие элементы и основная паренхима – мягкий луб.

Во вторичной коре встречаются секреторные клетки, смоляные каналы. Основная функция вторичной коры – проведение пластических веществ, также функция защиты.

На вторичную флоэму приходится значительно меньшая доля объема ствола, чем на вторичную ксилему. Это объясняется тем, что, во-первых, камбий образует меньше флоэмы, чем ксилемы, и, во-вторых, старая, нефункционирующая флоэма постепенно сминается.

В связи с увеличением окружности осевого органа паренхимные лучи расширяются и напоминают треугольник, вершина которого направлена в сторону камбия. Такая паренхима называется дилатационной (лат.dilatatio – расширение). Такое размещение паренхимы предохраняет луб от разрыва при росте стебля в толщину.

У хвойных вторичная флоэма имеет более простое строение. В лубе голосеменных гистологические элементы размещаются равномерно и, конечно, присутствуют смоляные каналы.

Все ткани снаружи от феллогена (имеется в виду самый внутренний пробковый камбий) по мере суберинизации пробковых клеток перестают получать воду и минеральные вещества. Эти все перидермы с остатками коры (отмершими клетками паренхимы и флоэмы) составляют наружную (внешнюю) кору. Живая часть коры между камбием и самым внутренним слоем феллогена называется внутренней корой.

Так, опираясь на наши знания из темы "Ткани" мы рассмотрели анатомическое строение стебля как осевого органа побега.

Сейчас рассмотрим строение бокового органа побега – листа.

ЛИСТ

Лист – главный фотосинтезирующий орган высших растений. Строение листа и его функции тесно взаимосвязаны.

Из суммарного уравнения реакций фотосинтеза:

 

СО2 + Н2Охл-лhv (СН2О)n + О2

можно сделать вывод, что 1)листьям нужен источник СО2 и вода; 2)листья должны быть приспособлены к поглощению солнечной энергии, у них должен быть хлорофилл; 3)как один из продуктов реакции будет выделяться О2; 4)углевод должен или откладываться в запас или транспортироваться в другие части растения. Лист – весьма специализированный орган, отвечающий всем этим требованиям.

Вся эволюция листа, как вегетативного органа, проходила по пути развития приспособленности к наилучшему использованию света.

По микрофильной линии эволюции лист рассматривается как вырост телома архаичных растений типа риниофитов и сохраняет структуру строения осевого органа.

По макрофильной линии эволюции лист возник в результате сплющивания, размещения теломов в одной плоскости и последующего объединения их в одно целое. При этом была утеряна способность к длительному верхушечному нарастанию и ветвлению. Каковы же морфологические и анатомические особенности листа, возникшие в результате длительной эволюции?

Взрослый лист обычно состоит из листовой пластинки и черешка. Черешок – узкая стеблевидная часть листа между листовой пластинкой и узлом побега, при помощи которой лист ориентируется в пространстве и размещается наиболее благоприятно относительно света. Через черешок осуществляется связь листовой пластинки и стебля. В черешке хорошо развиты проводящие и механические ткани. При листопаде в черешке образуется отделительный слой.

Самая нижняя часть листа, сочлененная со стеблем, называется основой листа. Основа листа может принимать разнообразную форму. Чаще всего имеет вид небольшого утолщения и называется листовой подушечкой. Чаще при основе листа имеются разной формы и размера парные боковые выросты – прилистники. Прилистники могут быть листовидные и служить дополнительной ассимилирующей поверхностью. Прилистники могут быть игловидные и выполнять функции защиты растения.

Встречаются чешуевидные, пленчатые прилистники. В эволюционном плане наблюдается редукция прилистников и у эволюционно молодых растений они рано опадают или вообще отсутствуют.

У некоторых злаков, сельдерейных (зонтичных) основа листа разрастается и образует замкнутую или незамкнутую трубку – листовое влагалище. Листовое влагалище способствует длительному сохранению интеркалярной меристемы и служит средством дополнительной опоры побега.

Основная часть листа – листовая пластинка. В результате неравномерного освещения верхней и нижней сторон листа пластинка имеет дорзовентральное строение, т.е. строение верхней стороны листа, брюшной, отличается от строения нижней стороны, спинной. Верхняя сторона листа называется брюшной, т.к. в почке эта сторона внутренняя и повернута к оси побега. Нижняя, спинная, сторона листа в почке повернута кнаружи от растения. Таким образом, лист с дорзовентральной симметрией – двусторонний илибилатеральный или бифациальный. Характерен для двудольных.

Лист, имеющий радиальную симметрию, - эквифациальный. Такие утолщенные, цилиндрической формы листья встречаются у толстянковых. Односторонние, или изолатеральные унифациальные, листья характерны для злаков, лука.

Рассмотрим анатомическое строение листовой пластинки.

Как корень и стебель, лист состоит из покровной, проводящей и основной тканей. Т.к. лист обычно не имеет вторичного роста (за исключением незначительного роста в черешках и крупных жилках), в качестве покровной ткани у него сохраняется эпидерма.

Устьица в основном встречаются на нижней поверхности листа. В листьях двудольных устьица рассеяны по всей поверхности листа без видимого порядка. В листьях однодольных и хвойных они распределены рядами, параллельными продольной оси листа. В эпидерме некоторых злаков есть моторные или двигательные клетки. Они крупнее обычных клеток эпидермиса. Вакуоль занимает почти всю клетку. При потере тургора эти клетки сокращаются и способствуют складыванию или скручиванию листа.

Большая часть основной ткани листовой пластинки приходится на долю мезофилла. Мезофилл дифференцированный. Палисадный мезофилл размещается к верхней стороне пластинки, губчатый – к нижней. Листья с таким строением и есть бифациальные или дорзовентральные.

Если палисадный мезофилл размещается с двух сторон листа, лист унифациальный или изолатеральный.

В мезофилле злаков отчетливой дифференциации на палисадную и губчатую хлоренхиму нет. Клетки мезофилла расположены радиально вокруг пучков.

Проводящие пучки листа называются жилками, а система ветвления жилок – жилкование. Особенности расположения проводящих пучков в листовых пластинках обусловливают разные типы жилкования, которое может быть дихотомическим, параллельным, дуговидным, пальчатым и перистым.

В зависимости от того, как жилки более высоких порядков ветвления связаны между собой, отличают открытое (дихотомическое) и закрытое жилкование. При дихотомическом жилковании жилки ветвятся дихотомически, отходят под острым углом и доходят до края листовой пластинки, нигде не сливаясь с соседними жилками. При закрытом жилковании мелкие жилки в результате анастамозов (перекрещиваний) образуют сеть, которой бывает пронизана вся пластинка или большая ее часть.

Листья с пальчатым и перистым жилкованием, а это в основном двудольные, имеют среднюю, наиболее крупную жилку. Жилка состоит из первичной ксилемы и первичной флоэмы, возникающих из прокамбия и объединенных в коллатеральные пучки. Между ксилемой и флоэмой часто формируется камбий, но он не действует. Поэтому ксилема и флоэма – первичные.

Пучки образуют в листе непрерывную систему, связанную с проводящей системой стебля. Поэтому ксилема всегда ориентирована к морфологически верхней стороне листа, а флоэма – к морфологически нижней.

Средняя жилка связана латерально с уступающими ей по величине боковыми жилками. Каждая из них связана с еще более мелкими, а те в свою очередь расчленяются на еще более мелкие и т.д. Количество порядков ветвления у двудольных варьирует от 2 до 5 и более. Самые мелкие ветви образуют ячейки, внутри которых замкнуты небольшие участки мезофилла – ареолы.

В открытой дихотомической системе жилкования замкнутые ячейки отсутствуют.

В листьях однодольных (с параллельным жилкованием) продольные жилки связаны между собой более мелкими жилками – комиссуральными пучками, которые располагаются в виде простых поперечных перемычек. Количество проводящих тканей в мелких жилках постепенно уменьшается. В окончаниях пучков ксилемные элементы часто тянутся на большее растояние, чем флоэмные. Ксилема в окончаниях жилок обычно состоит из коротких трахеальных элементов, флоэма – из коротких узких ситовидных элементов и крупных клеток-спутников.

Небольшие проводящие пучки, локализованные в мезофилле, окружены одним или несколькими слоями компактно сложенных клеток, образующих обкладку пучка. Обкладки пучка могут быть паренхимными или склеренхимными. У некоторых видов наблюдается суберинизация клеточных оболочек в обкладках пучков, что свидетельствует о том, что клетки обкладки могут функционировать как эндодерма.

В крупных жилках с одной или с двух сторон находится колленхима и склеренхима. Ткань, ассоциирующаяся с крупными жилками, возвышается над поверхностью листа и образует выступы. Участок ткани, заключенный между выступами жилок, называют "интеркостальной зоной" (лат. название выступа "costa" – ребро).

У видов, имеющих толстые листья, в мезофилле встречаются различные склереиды, выполняющие функцию распорок.

Листья злаков характеризуются сильным развитием склеренхимы.

Листья голосеменных менее разнообразны по структуре, чем листья покрытосеменных. Рассмотрим на примере хвоинки сосны как приспособленность к перенесению низких температур зимой и способность к жизни в течение нескольких лет нашли свое отражение в анатомическом строении. Хвоинка имеет толстостенную эпидерму с мощной кутикулой и глубоко погруженными устьицами. Побочные клетки некоторых хвойных (Cupressaceae) имеют кутикулярный валик, который нависает над замыкающими клетками устьиц. Устьица размещаются вертикальными рядами по всем сторонам хвоинки. Под эпидермой находятся толстостенные с частично лигнифицированными оболочками клетки гиподермы. Мезофилл складчатый. В нем размещаются смоляные ходы. В центре хвоинки находятся проводящие пучки. Обычно два, реже один. Эти пучки связаны склеренхимной стяжкой. Пучки окружены трансфузионной тканью, состоящей из трахеид и паренхимных клеток. Трансфузионная ткань (лат. transfusio –– переливание) имеет отношение к транспорту воды и питательных веществ между проводящими пучками и мезофиллом.

Трансфузионная ткань окружена толстостенной эндодермой. Эндодерма часто имеет пояски Каспари на ранних стадиях развития и субериновую пластинку на более поздних. В зрелом состоянии клетки эндодермы имеют вторичные лигнифицированные оболочки.

Анатомическое строение листовой пластинки выявляет значительную пластичность. Строение изменяется в зависимости от условий существования растения и размещения листьев на растении.

Мы уже отмечали одно из направлений развития современной ботаники – экологическую анатомию растений – и говорили, что именно живое содержимое клетки – протопласт – прежде всего реагирует на изменение условий окружающей среды. Так, клетки северных растений менее вакуолизированы, имеют крупные хлоропласты. В строме выявляется много крахмальных зерен. Тилакоидная система хлоропластов развита слабее, чем у хлоропластов растений умеренных широт. Численность митохондрий у северных растений в 2-2,5 раза выше. ЭПР и аппарат Гольджи развиты сильнее. Такие особенности субмикроскопического строения клеток мезофилла растений севера характеризуются как важные адаптивные признаки, способствующие выживанию растений в суровых климатических условиях.

У растений, приспособленных к дефициту влаги, холоду отмечаются толстые клеточные оболочки, особенно в эпидерме. Сильно утолщенные наружные оболочки крупноклеточной эпидермы занимают половину полости клетки. Над эпидермой – толстый слой кутикулы. С поверхности кутикула вся покрыта толстыми чешуями воска, от чего и зависит сизоватый оттенок листьев.

Устьица погружены в углубления, высланные эпидермальными волосками.

У растений-суккулентов отмечается наличие водозапасающей ткани.

Интересные приспособления для улавливания влаги у листьев лебеды мягкой (Африка). Лист с верхней и нижней сторон покрыт сплошным слоем многорядно размещенных пузыревидных волосков. Толщина этого слоя значительно превышает толщину мезофилла и предохраняет живые ткани от высыхания. Волоски способны улавливать влагу воздуха ночью и улучшать суровый водный режим растения.

Листья и стебель лебеды раскидистой нашей лесной зоны покрыты многочисленными пузыревидными волосками, составляющими впечатление мучнистого налета, но такого плотного многорядного слоя, как у лебеды мягкой, они не образуют.

На примере сравнивания листьев двух видов лебеды видно, что систематические признаки близких таксономических единиц при расселении их в разных экологических условиях приобретают неодинаковое развитие и носят приспособительный характер.

Листья растений дождевых лесов (например, монстера) имеют продырявленные листовые пластинки и длинные черешки. Избыток воды всегда легко стекает. Устьица открыты. Палисадная ткань с крупными воздушными полостями.

Помимо температуры, влажности еще один важный абиотический фактор – свет, на который растение реагирует структурными изменениями.

Листья, развивающиеся на прямом солнечном свету, мельче теневых, но толще теневых в результате сильного развития палисадного мезофилла.

Таким образом, закрепленные в ходе эволюции приспособления к условиям среды касаются количественных отличий, но не изменяют принципов организации.

Онтогенез листа

Листья закладываются в форме небольших бугорков как боковые выросты апикальной меристемы. В образовании листового бугорка принимает участие не только туника, но и клетки корпуса. Листовой примордий разрастается из исходного выступа вверх в виде конического или игловидного выроста. Вскоре листовые зачатки окружают апикальную меристему, защищают ее и механически, и тем теплом, которое они выделяют при дыхании.

Ранний рост листа обычно разделяется на апикальный и маргинальный (краевой). Первый связан с удлинением примордия, второй – с латеральным разрастанием, в результате которого образуются две части пластинки. В соответствии с этим растущий примордий имеет апикальную меристему на верхушке и две маргинальные меристемы по бокам оси. Апикальный рост примордия не продолжительный. За ростом апекса и краев пластинки следует интеркалярный рост.

В сложном листе активность маргинальной меристемы локализуется в отдельных центрах, каждый из которых формирует отдельный листочек.

Развитие листовой пластинки происходит быстрее, чем рост черешка, который образуется позднее путем интеркалярного роста.

Если на границе между основой интеркалярной и маргинальной зон формируется перетяжка, то развивается черешковый лист. Большая часть черешка образована интеркалярной зоной. Если такой перетяжки (на границе между основой интеркалярной и маргинальной зон) не образуется, развивается сидячий лист.

В листовом зачатке однодольных растений маргинальные меристемы почти не закладываются и долгое время характерен интеркалярный рост. Отсюда основная форма листовой пластинки – линейная.

Отличия в скорости делений и растяжения клеток разных слоев пластинки приводят к образованию многочисленных межклетников и типичной структуры мезофилла.

Развитие других тканей коррелирует с развитием проводящих тканей. Прокамбий обособляется одновременно в листе и прилегающем участке конуса нарастания, образуя непрерывный тяж. Он формирует первичный проводящий пучок, который является непрерывным и общим для листа и стебля.

Онтогенез листа свидетельствует об общей природе листа и стебля как частей единого целого – побега.

С момента развертывания почки начинается внепочечная фаза развития листа. Поверхность листьев при этом увеличивается в несколько сотен, даже тысяч раз. Рост поверхности достигается за счет деления большинства клеток листа и растяжения их в длину и ширину.

Продолжительность жизни листьев зависит от генетических и климатических факторов. У листопадных деревьев и кустарников умеренного климата внепочечный период жизни листьев составляет 4-5 месяцев. Листья хвойных растений живут от двух до шести и более лет. Но в любых случаях продолжительность жизни листьев значительно меньше продолжительности жизни осевых органов растения.

Welwitschia mirabilis произрастает в каменистых пустынях юго-западной Африки. Это дерево – карлик имеет длинный корень, толстый и короткий ствол (до 50см высотой и до 1м толщиной) и два крупных листа, сохраняющиеся в течение всей жизни (до 2000 лет). Листья достигают 2-3 метра длины и постоянно нарастают у основания, отмирая у верхушки. Почти единственным источником влаги для вельвичии является густой туман, влагу которого это растение поглощает через многочисленные устьица на обеих сторонах листа (22 200 устьиц на 1см2).

Активное отделение листьев от ветвей без повреждения ее живых тканей называется опадением. Сезонный листопад деревьев является результатом реакции на изменение длины дня. Опадение листьев осенью значительно уменьшает поверхность испарения растения, что необходимо в условиях физиологического дефицита влаги осенью и зимой. Благодаря листопаду понижается опасность полома ветвей от тяжести снега.

Опадение листьев подготавливается цитологическими и биохимическими изменениями в основе черешка в зоне отделения. Здесь могут быть выделены два слоя: отделительный слой, по которому происходит разлом, и защитный слой, который предохраняет обнажающуюся при опадении листа поверхность от высыхания и проникновения паразитов.

У большинства листьев формирование отделительного слоя происходит на протяжении онтогенеза. В этой зоне сокращается количество механической ткани. Перед опадением в трахеальных элементах образуются тилы, в ситовидных элементах откладывается каллоза. При опадении происходит ферментативное разрушение клеточных оболочек, приводящее к отделению клеток друг от друга. Изменения оболочек включают утрату цементирующей способности срединной пластинки (отчасти в результате удаления из нее кальция), гидролиз самих целлюлозных оболочек и разрыв склерифицированных трахеальных элементов.

Защитный слой, или рубец, образуется в результате отложения в оболочках и межклетниках защитных веществ, таких, как суберин или раневая камедь. У древесных растений защитный слой заменяется перидермой, которая закладывается под защитным слоем и становится непрерывной с перидермой остальной части стебля.

Сбрасывание листьев не обязательно связано с процессом растворения клеточных оболочек. Механический отрыв без предварительных химических изменений можно наблюдать при сбрасывании хвои у ели.

После опадения листьев остаются листовые рубцы со своими пучковыми рубцами. Пучковые рубцы – это обломанные концы проводящих пучков, которые шли из листовых следов в черешок листа до его опадения.

Листовые следы – это ответвления от проводящей системы стебля к листьям. Листовой след тянется от места его слияния со стеблевым пучком до выхода в лист. Один лист может иметь один или более листовых следов.

Т.к. стебель и лист имеют филогенетически общее происхождение, никакой фундаментальной разницы между листовыми следами и пучками стебля не существует. Соответствующие термины имеют описательное, топографическое значение.

В области узла, где листовой след отходит от центрального проводящего цилиндра стебля в направлении к основе листа, в цилиндре формируется паренхимная зона – листовая лакуна или листовая щель. Количество листовых следов и листовых лакун разное у разных растений.

Первичным типом узла у покрытосеменных является узел с тремя или большим количеством лакун. Основное направление эволюции покрытосеменных характеризуется уменьшением количеством лакун.

Лакуны, сердцевина, межпучковые зоны, проводящая система и расположенные на периферии проводящей системы перицикл составляют внутренний стержень осевой части растения (стебля и корня) или стелу.

Классификация стел основывается на взаимном расположении проводящих и непроводящих тканей в осевых органах на первичной стадии развития. В простейшем типе стелы, которая рассматривается как наиболее филогенетически примитивная, проводящая ткань образует сплошную колонку, причем флоэма окружает ксилему. Это протостела. Такая организация стебля биологически несовершенная, т.к. поверхность соприкосновения между проводящими и основными тканями малая.

Дальнейшая эволюция стелы шла по пути увеличения поверхности соприкосновения проводящих тканей с основными. Это достигалось двумя путями. В одном случае стела образует глубокие выросты в сторону коры и на поперечном срезе имеет форму звезды. Это актиностела.

Второй, биологически более перспективный путь развития, - это появление паренхимной сердцевины в центре стелы. Это сифоностела.

Более тесная связь между проводящими и основными тканями возникает с развитием листьев. Чем больше листьев, тем больше стела насыщена основной паренхимой. Стела приобретает вид сети (греч. сеть – dictуon). Это диктиостела.

Еще больше паренхиматизирована стела современных цветковых. Стела, представляющая собой систему проводящих тяжей и межпучковых зон, - эустела (греч. eu – хороший).

У однодольных листовые следы доходят до центра стебля, затем отклоняются к периферии. Поэтому на поперечном сечении стебля пучки кажутся разбросанными без всякого порядка. Ataktos с греч. беспорядочный. Отсюда название стелы однодольных – атактостела. Для нее характерна высокая степень паренхиматизации, когда каждый листовой след "

<== предыдущая лекция | следующая лекция ==>
Жоғары сатдағы өсімдіктер систематикасы – Cormobionta 5 страница | КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных