Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Examples of today’s popular communication tools




The existence and broad adoption of the Internet has ushered in new forms of communication that empower individuals to create information that can be accessed by a global audience.

Instant messaging (IM) is a form of real-time communication between two or more people based on typed text. The text is conveyed via computers connected over either a private internal network or over a public network, such as the Internet. Developed from earlier Internet Relay Chat (IRC) services, IM also incorporates features such as file transfer, voice, and video communication. Like e-mail, IM sends a written record of the communication. However, whereas transmission of e-mail messages is sometimes delayed, IM messages are received immediately. The form of communication that IM uses is called real-time communication.

Weblogs (blogs) are web pages that are easy to update and edit. Unlike commercial websites, which are created by professional communications experts, blogs give anyone a means to communicate their thoughts to a global audience without technical knowledge of web design. There are blogs on nearly every topic one can think of, and communities of people often form around popular blog authors.

Wikis are web pages that groups of people can edit and view together. Whereas a blog is more of an individual, personal journal, a wiki is a group creation. As such, it may be subject to more extensive review and editing. Like blogs, wikis can be created in stages, and by anyone, without the sponsorship of a major commercial enterprise. There is a public wiki, called Wikipedia, that is becoming a comprehensive resource - an online encyclopedia - of publicly-contributed topics. Private organizations and individuals can also build their own wikis to capture collected knowledge on a particular subject. Many businesses use wikis as their internal collaboration tool. With the global Internet, people of all walks of life can participate in wikis and add their own perspectives and knowledge to a shared resource.

Podcasting is an audio-based medium that originally enabled people to record audio and convert it for use with iPods - a small, portable device for audio playback manufactured by Apple. The ability to record audio and save it to a computer file is not new. However, podcasting allows people to deliver their recordings to a wide audience. The audio file is placed on a website (or blog or wiki) where others can download it and play the recording on their computers, laptops, and iPods.

Collaboration tools give people the opportunity to work together on shared documents. Without the constraints of location or time zone, individuals connected to a shared system can speak to each other, share text and graphics, and edit documents together. With collaboration tools always available, organizations can move quickly to share information and pursue goals. The broad distribution of data networks means that people in remote locations can contribute on an equal basis with people at the heart of large population centers.

Initially, data networks were used by businesses to internally record and manage financial information, customer information, and employee payroll systems. These business networks evolved to enable the transmission of many different types of information services, including e-mail, video, messaging, and telephony.

Intranets, private networks in use by just one company, enable businesses to communicate and perform transactions among global employee and branch locations. Companies develop extranets, or extended internetworks, to provide suppliers, vendors, and customers limited access to corporate data to check order status, inventory, and parts lists.

Today, networks provide a greater integration between related functions and organizations than was possible in the past.

Consider these business scenarios.

A wheat farmer in Australia uses a laptop enabled with a Global Positioning System (GPS) to plant a crop with precision and efficiency. At harvest time the farmer can co-ordinate harvesting with the availability of grain transporters and storage facilities. Using mobile wireless technology, the grain transporter can monitor the vehicle in-route in order to maintain the best fuel efficiency and safe operation. Changes in status can be relayed to the driver of the vehicle instantly.

Remote workers, called teleworkers or telecommuters, use secure remote access services from home or while traveling. The data network enables them to work as if they were on-site, with access to all the network-based tools normally available for their jobs. Virtual meetings and conferences can be convened which include people in remote locations. The network provides audio and video capability so all participants can both see and hear each other. The information from the meetings can be recorded to a wiki or blog. The latest versions of the agenda and minutes can be shared as soon as they are created.

MODERN NETWORKS

Networks infrastructures can vary greatly in terms of:

- The size of the area covered

- The number of users connected

- The number and types of services available

An individual network usually spans a single geographical area, providing services and applications to people within a common organizational structure, such as a single business, campus or region. This type of network is called a Local Area Network (LAN). A LAN is usually administered by a single organization. The administrative control that governs the security and access control policies are enforced on the network level.

When a company or organization has locations that are separated by large geographical distances, it may be necessary to use a telecommunications service provider (TSP) to interconnect the LANs at the different locations. Telecommunications service providers operate large regional networks that can span long distances. Traditionally, TSPs transported voice and data communications on separate networks. Increasingly, these providers are offering converged information network services to their subscribers.

Individual organizations usually lease connections through a telecommunications service provider network. These networks that connect LANs in geographically separated locations are referred to as Wide Area Networks (WANs). Although the organization maintains all of the policies and administration of the LANs at both ends of the connection, the policies within the communications service provider network are controlled by the TSP.

WANs use specifically designed network devices to make the interconnections between LANs. Because of the importance of these devices to the network, configuring, installing and maintaining these devices are skills that are integral to the function of an organization's network.

LANs and WANs are very useful to individual organizations. They connect the users within the organization. They allow many forms of communication including exchange e-mails, corporate training, and other resource sharing.

Although there are benefits to using a LAN or WAN, most of us need to communicate with a resource on another network, outside of our local organization.

Examples of this type of communication include:

- Sending an e-mail to a friend in another country

- Accessing news or products on a website

- Getting a file from a neighbor's computer

- Instant messaging with a relative in another city

- Following a favorite sporting team's performance on a cell phone

- Internetwork

A global mesh of interconnected networks (internetworks) meets these human communication needs. Some of these interconnected networks are owned by large public and private organizations, such as government agencies or industrial enterprises, and are reserved for their exclusive use. The most well-known and widely used publicly-accessible internetwork is the Internet.

The Internet is created by the interconnection of networks belonging to Internet Service Providers (ISPs). These ISP networks connect to each other to provide access for millions of users all over the world. Ensuring effective communication across this diverse infrastructure requires the application of consistent and commonly recognized technologies and protocols as well as the cooperation of many network administration agencies.

The term intranet is often used to refer to a private connection of LANs and WANs that belongs to an organization, and is designed to be accessible only by the organization's members, employees, or others with authorization.

Note: The following terms may be interchangeable: internetwork, data network, and network. A connection of two or more data networks forms an internetwork - a network of networks. It is also common to refer to an internetwork as a data network - or simply as a network - when considering communications at a high level. The usage of terms depends on the context at the time and terms may often be interchanged.

WORKSTATION

A workstation is a high-end microcomputer designed for technical or scientific applications. Intended primarily to be used by one person at a time, they are commonly connected to a local area network and run multi-user operating systems. The term workstation has also been used to refer to a mainframe computer terminal or a PC connected to a network.

Perhaps the first computer that might qualify as a "workstation" was the IBM 1620, a small scientific computer designed to be used interactively by a single person sitting at the console. It was introduced in 1959. One peculiar feature of the machine was that it lacked any actual arithmetic circuitry. To perform addition, it required a memory-resident table of decimal addition rules. This saved on the cost of logic circuitry, enabling IBM to make it inexpensive. The machine was code-named CADET, which some people waggishly claimed meant "Can't Add, Doesn't Even Try". Nonetheless, it rented initially for $1000 a month.

In 1965, IBM introduced the IBM 1130 scientific computer, which was meant as the successor to the 1620. Both of these systems came with the ability to run programs written in Fortran and other languages. Both the 1620 and the 1130 were built into roughly desk-sized cabinets. Both were available with add-on disk drives, printers, and both paper-tape and punched-card I/O. A console typewriter for direct interaction was standard on each.

Early examples of workstations were generally dedicated minicomputers; a system designed to support a number of users would instead be reserved exclusively for one person. A notable example was the PDP-8 from Digital Equipment Corporation, regarded to be the first commercial minicomputer. The Lisp machines developed at MIT in the early 1970s pioneered some of the principles of the workstation computer, as they were high-performance, single-user systems intended for heavily interactive use.

The first computer designed for single-users, with high-resolution graphics facilities (and so a workstation in the modern sense of the term) was the Xerox Alto developed at Xerox PARC in 1973. Other early workstations include the Three Rivers PERQ (1979) and the later Xerox Star (1981).In the early 1980s, with the advent of 32-bit microprocessors such as the Motorola 68000, a number of new participants in this field appeared, including Apollo Computer and Sun Microsystems, who created Unix-based workstations based on this processor. Meanwhile DARPA's VLSI Project created several spinoff graphics products as well, notably the SGI 3130, and Silicon Graphics' range of machines that followed. It was not uncommon to differentiate the target market for the products, with Sun and Apollo considered to be network workstations, while the SGI machines were graphics workstations. As RISC microprocessors became available in the mid-1980s, these were adopted by many workstation vendors.

Workstations tended to be very expensive, typically several times the cost of a standard PC and sometimes costing as much as a new car. However, minicomputers sometimes cost as much as a house. The high expense usually came from using costlier components that ran faster than those found at the local computer store, as well as the inclusion of features not found in PCs of the time, such as high-speed networking and sophisticated graphics. Workstation manufacturers also tend to take a "balanced" approach to system design, making certain to avoid bottlenecks so that data can flow unimpeded between the many different subsystems within a computer. Additionally, workstations, given their more specialized nature, tend to have higher profit margins than commodity-driven PCs.

The systems that come out of workstation companies often feature SCSI or Fibre Channel disk storage systems, high-end 3D accelerators, single or multiple 64-bit processors, large amounts of RAM, and well-designed cooling. Additionally, the companies that make the products tend to have very good repair/replacement plans. However, the line between workstation and PC is increasingly becoming blurred as the demand for fast computers, networking and graphics have become common in the consumer world, allowing workstation manufacturers to use "off the shelf" PC components and graphics solutions as opposed to proprietary in-house developed technology. Some "low-cost" workstations are still expensive by PC standards, but offer binary compatibility with higher-end workstations and servers made by the same vendor. This allows software development to take place on low-cost (relative to the server) desktop machines.

There have been several attempts to produce a workstation-like machine specifically for the lowest possible price point as opposed to performance. One approach is to remove local storage and reduce the machine to the processor, keyboard, mouse and screen. In some cases, these diskless nodes would still run a traditional OS and perform computations locally, with storage on a remote server. These approaches are intended not just to reduce the initial system purchase cost, but lower the total cost of ownership by reducing the amount of administration required per user.

This approach was actually first attempted as a replacement for PCs in office productivity applications, with the 3Station by 3Com as an early example; in the 1990s, X terminals filled a similar role for technical computing. Sun has also introduced "thin clients", most notably its Sun Ray product line. However, traditional workstations and PCs continue to drop in price, which tends to undercut the market for products of this type

Historically, workstations had offered higher performance than personal computers, especially with respect to CPU and graphics, memory capacity and multitasking cability. They are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulation, rendering and animation of images, as well as mathematical plots. Consoles consist of a high resolution display, a keyboard and a mouse at a minimum, but also offer multiple displays, graphics tablets, 3D mice (devices for manipulating and navigating 3D objects and scenes), etc. Workstations are the first segment of the computer market to present advanced accessories and collaboration tools.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных