Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Мембранный потенциал




В процессе жизнедеятельности в клетках и тканях могут возникать мембранные разности электрических потенциалов вследствие градиента концентрации ионов и переноса ионов через мембрану. Поэтому, если электрические потенциалы цитоплазмы и внеклеточной жидкости различны, то разность этих потенциалов приложена именно к мембране. Эта разность потенциалов называется трансмембранным потенциалом или просто мембранным потенциалом
Концентрации различных ионов внутри и снаружи клетки неодинаковы. Во внеклеточном пространстве имеется избыток ионов Na+, Cl-, внутри клетки ионов К+. Они могут диффундировать через пористую белковую структуру мембраны. Скорости диффузии разных ионов различны.
Помимо указанных ионов внутриклеточные и внеклеточные жидкости содержат большое количество отрицательных ионов. Но размеры этих ионов больше, чем ионные каналы и их диффузионным эффектом можно пренебречь.

Трансмембранный потенциал частично обусловлен избирательной проницаемостью клеточной мембраны, что ограничивает скорость движения одного иона относительно другого. К+, например, может проникать через мембрану значительно быстрее,, чем С1. Если оба этих иона внутри клетки имеют более высокую концентрацию, чем вокруг нее, то более быстрая нетто-диффузия ионов К+ наружу по градиенту концентрации в конечном итоге приведет к возникновению более высокого отрицательного заряда внутри клетки, так как там останется избыточное количество С1

 Движение ионов через мембраны происходит частично благодаря электрохимическим градиентам и частично с помощью локализованных в мембранах насосов. Когда транспорт осуществляется по электрохимическому градиенту, ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением Нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь. Транс-, мембранные потенциалы образуются двумя путями 1) в результате диффузии как анионов, так и катионов, которые, однако, движутся через мембрану с разными скоростями 2) благодаря электрогенному транспорту с прямым использованием энергии для прокачивания протонов, анионов или катионов через мембрану против их электрохимических градиентов. Оба этих процесса всегда действуют таким образом, что внутри клетки создается более отрицательный заряд по сравнению с зарядом юне ее.

 

 

Формула нернста

11.Если бы мембрана была пассивной структурой,т.е., разделяла бы два участка с одинаковым электрическим потенциалом, то ионы К+ диффундировали бы в обоих направлениях с одинаковой скоростью, и градиента концентрации не возникало бы. Но на поверхностях мембраны имеется двойной слой зарядов, и существует разность потенциалов, которая приблизительно равна-70 мВ. Эта разность потенциалов между цитоплазмой и окружающей средой называется потенциалом покоя. Он обусловливает наличие градиента концентрации различных ионов. Отметим, что жидкость с каждой стороны мембраны электрически нейтральна. Заряды имеются только на внутренней и внешней поверхности мембраны.
Разность потенциалов, которая обеспечивает равновесное отношение концентраций, дается уравнением Нернста:

 

В общем случае потенциал покоя дается уравнением Гольдмана-Ходжкина-Катца:

 

 

Потенциал действия

При возбуждении клетки разность потенциалов между клеткой и окружающей средой изменяется – возникает потенциал действия.
Потенциалом действия называется электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменением ионной проницаемости мембраны.
Рассмотрим распространение потенциала действия в нервном волокне. Нервная клетка или нейрон состоит из клеточного тела и выроста, называемого аксоном. Нейрон можно привести в возбужденное состояние в любой точке аксона электрическим, химическим или механическим способом.
При возбуждении аксона внезапно увеличивается проницаемость ионов Na+ (в 5000 раз и более). Большое количество ионов натрия устремляется в клетку, перекрывая ее отрицательный потенциал. За доли секунды возникает локальный положительный потенциал. Этот положительный потенциал, равный +40 мВ называется потенциалом действия. Потенциал действия начинает распространяться по обе стороны от возбужденной точки, пока не деполяризуется весь участок. После этого увеличивается проницаемость ионов К+ и они начинают диффундировать из клетки во внеклеточное пространство. Начинается фаза реполяризации и значение потенциала действия становится отрицательным, меньшим чем потенциала покоя. В этот момент начинают работать натрий-калиевые насосы, которые восстанавливают значение потенциала покоя, после чего весь процесс повторяется. Весь процесс занимает ~ 10 мс. Отметим, что генерация потенциала действия происходит по принципу «все или ничего» – процесс либо вообще не начинается, либо идет до конца.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных