Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Радиационные дозы и единицы их измерения




Экспозиционная доза – отношение суммарного электрического заряда dQ ионов одного знака, созданных электронами, освободившимися в облученном воздухе при полном использовании ионизирующей способности электронов, к массе dm этого воздуха:

(6.1)

Единица измерения экспозиционной дозы в системе СИ – Кл/кг. Внесистемная единица измерения – рентген (Р). 1 Р = 2,58·10–4 Кл/кг.

Доза поглощенная – величина энергии, переданная ионизирующим излучением веществу:

(6.2)

где dE – средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме; dm – масса вещества в этом объеме.

Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема.

В системе СИ поглощенная доза измеряется в Дж/кг и имеет специальное название – грей (Гр). Внесистемная единица – рад. 1 рад = 0,01 Гр.

Доза эквивалентная – поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения:

, (6.3)

где ПT,R – средняя поглощенная доза в органе или ткани Т; WR – взвешивающий коэффициент для излучения вида R.

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения:

(6.4)

Единицей эквивалентной дозы в СИ является зиверт (Зв). 1 Зв =
= 1 Гр/WR. Внесистемная единица эквивалентной дозы – бэр. Соотношение между этими единицами: 1 бэр = 0,01 Зв.

Доза эффективная – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентных доз в органах и тканях на соответствующие взвешивающие коэффициенты:

(6.5)

где HT – эквивалентная доза в органе или ткани Т; WT – взвешивающий коэффициент для органа или ткани.

Значения взвешивающих коэффициентов для тканей и органов при расчете эффективной дозы приведены в НРБ–99/2009.

Отношение любой дозы к промежутку времени, в течение которого она получена, называется мощностью дозы.


6.3. Действие ионизирующих излучений
на организм человека

Действие радиации на живой организм представляет собой комплекс многих взаимосвязанных процессов разной интенсивности и продолжительности. Это физико-химические, химические и биологические процессы, каждый из которых характеризуется определенным типом взаимодействия излучения с веществом и продуктами этого взаимодействия.

Биологическое действие радиации на живой организм начинается на клеточном уровне. Клетка животного состоит из клеточной мембраны, окружающей цитоплазму, в которой заключено более плотное ядро. Цитоплазма состоит из органических соединений биологического характера, образующих пространственную решетку, ячейки которой заполнены водой с растворенными в ней солями и относительно малыми молекулами липидов. Ядро считается наиболее чувствительной жизненно важной частью клетки, а основными его структурными элементами являются хромосомы. В основе строения хромосом находится молекула ДНК, в которой заключена наследственная информация организма. Отдельные участки ДНК, ответственные за оформление определенного элементарного признака, называются генами. Гены расположены в хромосомах в строго определенном порядке, и любому организму соответствует определенный набор хромосом в любой клетке. У человека любая клетка содержит
23 пары хромосом. При делении клетки хромосомы удваиваются и в определенном порядке располагаются в дочерних клетках.

Ионизирующее излучение вызывает повреждение хромосом (хромосомные аберрации), что приводит к соединению разорванных концов в новое сочетание. Это вызывает изменение аппарата дочерних клеток, неодинаковых с исходными. Если стойкие хромосомные аберрации происходят в половых клетках, то это ведет к мутациям, то есть появлению у облученных особей потомства с другими признаками. Мутации полезны, когда они приводят к повышению жизнестойкости организма, и вредны, когда они проявляются в виде различных врожденных пороков. Практика показывает, что при действии ионизирующих излучений вероятность возникновения полезных мутаций мала.

Необходимо отметить, что обнаружены непрерывно действующие в любой клетке процессы исправления химических повреждений в молекулах ДНК. ДНК достаточно устойчива по отношению к разрывам, вызываемым радиацией. Необходимо провести 7 разрушений структуры ДНК, чтобы произошла мутация. Это указывает на высокую прочность генов.

Разрушение жизненно важных для организма молекул возможно не только при прямом их разрушении ионизирующим излучением, но и при косвенном действии, когда сама молекула не поглощает непосредственно энергию излучения, а получает ее от другой молекулы (растворителя), которая первоначально поглотила эту энергию. В этом случае радиационный эффект обусловлен вторичным влиянием продуктов радиолиза (разложения) растворителя на молекулы ДНК. Этот механизм объясняет теория радикалов. Повторяющиеся прямые попадания ионизирующих частиц в молекулу ДНК могут вызвать ее распад. Однако вероятность такого попадания меньше, чем попаданий в клетки воды, которая служит основным растворителем. Поэтому радиолиз воды (H2O → H+ + OH) с последующим образованием молекулярного водорода и перекиси водорода, имеет первостепенное значение в радиобиологических процессах. Наличие в системе кислорода усиливает эти процессы. Главную роль в развитии биологических изменений играют ионы и радикалы, которые образуются в воде вдоль траектории движения ионизирующих частиц.

Высокая способность радикалов вступать в химические реакции обусловливает процессы их взаимодействия с биологически важными молекулами, находящимися непосредственно вблизи от них. В таких реакциях разрушаются структуры биологических веществ, а это в свою очередь приводит к изменениям биологических процессов, включая процессы образования новых клеток.

Когда мутация возникает в клетке, она распространяется на все клетки нового организма, которые образовались путем деления. Помимо генетических эффектов, которые могут сказываться на последующих поколениях (врожденные уродства), наблюдаются и так называемые соматические эффекты, которые опасны не только для самого организма, но и его потомства. Соматическая мутация распространяется только на определенный круг клеток, образовавшихся путем обычного деления из первичной клетки, претерпевшей мутацию.

Соматические повреждения являются результатом воздействия излучения на коллективы клеток, образующие определенные органы или ткани. Радиация тормозит или даже полностью останавливает процесс деления клеток, в котором собственно и проявляется их жизнь, а достаточно сильное излучение убивает клетки. Разрушительное действие излучения особенно заметно проявляется в молодых тканях.

К соматическим эффектам относят локальное повреждение кожи (лучевой ожог), катаракту глаз, повреждение половых органов (кратковременная или постоянная стерилизация) и др.

Генетические эффекты обнаружить трудно, так как они действуют на малое число клеток и имеют длительный скрытый период.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит. Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового предела. Генетические эффекты определяются только коллективной дозой, а выявление эффекта у отдельного индивидуума практически непредсказуемо.

Соматические эффекты всегда начинаются с определенной пороговой дозы: при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических – организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

6.4. Основные методы измерений характеристик
ионизирующих излучений

Средства измерений ионизирующих излучений условно делятся на следующие классы.

Дозиметры – средства измерений экспозиционной дозы и ее мощности, поглощенной дозы и ее мощности.

Радиометры – средства измерений активности радионуклидов в образцах и объектах, объемной активности радионуклидов в жидкостях и газах, объемной активности радиоактивных аэрозолей, удельной активности радионуклидов в твердых и сыпучих материалах, удельной поверхностной активности и др.

Спектрометры – средства измерений энергии частиц ионизирующих излучений.

В комбинированных приборах могут объединяться функции средств измерений из различных классов.

Различие методов измерений связано с использованием различных методов регистрации излучений, применяемых в измерительных преобразователях, и методов обработки, применяемых в аппаратурных средствах обработки информации и измерительных преобразователей.

Основные методы регистрации излучений:

– Калориметрический метод – метод, основанный на измерении изменения температуры твердого или жидкого поглотителя при поглощении в нем энергии излучения. Метод в основном используется в первичных и вторичных эталонах и из-за малой чувствительности и громоздкости измерительной аппаратуры не используется в обычных условиях в сфере контроля радиационной безопасности.

– Ионизационный метод – метод с использованием детекторов с газовым наполнением, в которых заряженные частицы вызывают ионизацию газа. Метод широко используется в рабочих средствах измерения, используемых в сфере контроля радиационной безопасности.

– Сцинтилляционный метод основан на использовании органических и неорганических сцинтилляторов, в которых энергия, передаваемая излучением, превращается в световое излучение и регистрируется с помощью детекторов, чувствительных к световому излучению в данном спектре.

– Термолюминисцентный метод заключается в регистрации энергии, запасенной в специальном веществе при взаимодействии излучения с этим веществом и освобождаемой в виде светового излучения при последующем нагревании этого вещества в определенных условиях.

– Полупроводниковый метод – метод, основанный на регистрации изменений свойств полупроводникового детектора, вызванных взаимодействием излучения с полупроводниковым материалом, или регистрации импульсов (тока), возникающих от образования электронов (дырок) в полупроводниковом детекторе падающим на него излучением.

– Фотоэмульсионный метод – метод, основанный на регистрации изменений в фотоэмульсии, вызванных взаимодействием излучения со светочувствительным материалом фотоэмульсии.

– Активационный метод основан на регистрации наведенной активности в детекторах из различных материалов, вызванной в материале при облучении его нейтронами.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных