Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Законы и уравнение состояния идеальных газов.




Уравнения состояния реального газа

Идеальные газы

Идеальными называются газы, у которых молекулы представляют собой материальные точки и между молекулами отсутствуют силы взаимодействия.

При относительно низком давлении и высоких температурах реальные газы имеют малую плотность и, с известным допущением, могут рассматриваться как газы идеальные.

Законы идеальных газов были установлены в XVII - XIX столетиях исследователями, изучавшими экспериментальным путем поведение газов при давлениях, близких к атмосферному.

Закон Бойля (1662 г.) – Мариотта (1676 г.): произведение абсолютного давления на удельный объем идеального газа при неизменной температуре есть величина постоянная, т.е. произведение абсолютного давления на удельный объем идеального газа зависит только от температуры газа:

 

при t = idem рv= idem. (24)

 

Закон Гей Люссака ( 1802 г. ) – относительное расширение идеальных газов при неизменном давлении (p=idem) пропорционально повышению температуры

 

, (25)

 

при ; , (26)

 

где v – удельный объем газа при температуре t и давлении p; v0 – удельный объем газа при температуре t 0 = 0 0C; температурный коэффициент объемного расширения идеальных газов при t0 = 0 0C, сохраняющий одно и то же значение при всех давлениях и одинаковый для всех идеальных газов.

Из сопоставления этих законов выводится уравнение состояния идеальных газов - уравнение Клапейрона (1834 г.):

 

для 1 кг газа ; (27)

 

для кг газа , (28)

 

где – характеристическая постоянная газа; Т – абсолютная температура газа

. (29)

 

Продифференцировав уравнение Клапейрона при постоянном давлении, получим: .

Отсюда

. (30)

 

Это значит, что характеристическая газовая постоянная (R) – это термодинамическая работа 1 кг газа в изобарном процессе (p = idem) при изменении температуры газа на один градус.

Закон Авогадро ( 1811 г. ) – объем одного киломоля идеального газа не зависит от его природы и вполне определяется параметрами состояния газа .

Молярный объем идеального газа с использованием уравнения Клапейрона определяется из соотношения

 

, (31)

 

где Дж/(кмоль×К) – универсальная газовая постоянная.

Уравнения состояния для 1 кмоля и для кмолей идеального газа имеют следующий вид:

для 1 кмоля газа ; (32)

 

для кмолей газа . (32а)

 

Эти уравнения называются уравнениями Клапейрона – Менделеева.

Закон Джоуля определяет, что внутренняя энергия идеального газа зависит только от температуры

 

; . (33)

 

Реальные газы

Отсутствие теоретически обоснованного единого уравнения состояния реального газа привело к выводу большого количества эмпирических и полуэмпирических уравнений состояния, справедливых для отдельных газов в ограниченном диапазоне изменения параметров их состояния.

Чем точнее уравнение, тем больше (как правило) оно содержит индивидуальных констант. Так, в известном уравнении состояния
Ван-дер-Ваальса содержится две константы, а в более точных уравнениях число констант доходит до десяти и более.

В инженерных расчетах часто пользуются уравнением состояния идеального газа с введением в него поправочного коэффициента (z), называемого коэффициентом сжимаемости

. (34)

 

Коэффициент сжимаемости (z)учитывает различие между идеальным и реальными газами (для идеального газа z = 1).

Коэффициент сжимаемости является функцией давления, температуры и зависит от природы газа.

Для обобщения данных по коэффициентам сжимаемости различных газов был использован принцип «соответственных» состояний, сформулированный Ван-дер-Ваальсом. Принцип «соответственных» состояний утверждает, что критическое состояние действительно является одинаковым для всех веществ.

В критической точке для всех веществ r = 0, , , . Вещества находятся в соответственных состояниях при одинаковом удалении от критической точки.

Степень удаления от критической точки определяется с помощью приведенных параметров:

· приведенного давления ;

· приведенной температуры ;

· приведенного объема .

Уравнение состояния, записанное в виде F () = 0, называется приведенным уравнением состояния. Оно не содержит индивидуальных констант вещества.

Состояния вещества, в которых они имеют одинаковые и называются соответственными. Зная параметры и по данным рис. 4 определяется коэффициент сжимаемости z.


 

 
 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных