Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Понятие условного экстремума.




Пусть на открытом множестве G Rn заданы функции.

yi=fi(x) i=1,2,3,…,m (6.1)

x=(x1,x2,…,xn).Обозначим через Е множество точек x G, в которых все функции fi i=1,2,3,…,m обращаются в нуль:

E={x: fi(x)=0, i=1,2,3,…,m, x G} (6.2)

Уравнения

fi(x)=0, i=1,2,3,…,n (6.3)

будем называть уравнениями связи.

Определение: пусть на множестве G задана функция y=f0(x).Тогда x(0) E называется точкой условного экстремума (принят также термин “относительный экстремум”) функции f0(x) относительно (или при выполнении) уравнений связи (6.3), если она является точкой обычного экстремума этой функции, рассмотриваемой только на множестве Е.

Иначе говоря, здесь значения функции f0(x) в точке x(0) сравниваются не со всеми ее значениями в достаточно малой окрестности этой точки, а только со значениями в точках, принадлежащих одновременно указанной достаточно малой окрестности и множеству Е. Как и в случае обычных экстремумов, можно, естественно, рассматривать точки просто условного экстремума и точки строго условного экстремума.

Будем предполагать, что

1) все функции f0,f1,f2,…, fm непрерывно дифференцируемы в открытом множестве G;

2) в рассматриваемой точке x(0) векторы f1, f2,…, fm линейно независимы, т.е. ранг матрицы Якоби

fj j=1,2,…,m

xi i=1,2,…,n

равен m-числу ее строк (строки матрицы Якоби являются компонентами градиентов f1, f2,…, fm).

Это означает, что функции системы (6.1) независимы в некоторой окрестности точки x(0).Поскольку в n-мерном пространстве не может быть больше чем n линйено независимых векторов и ранг матрицы не может быть больше чиола столбцов, то из условия 2) следует,что m<n.

Согласно условию 2) в точке x(0) хотя бы один из определителей вида

(f1, f2,…, fm)

(xi1,xi2,…,xim)

отличен от нуля.Пусть для определенности в точке x(0).

(f1, f2,…, fm)

(xi1,xi2,…,xim) (6.4)

Тогда, в силу теоремы о неявных функциях, систему уравнений (6.3) в некоторой окрестности точки x(0)=(x1(0),x2(0),…,xn(0)) можно разрешить относительно переменных x1,x2,…,xm:

x1= 1(x1,x2,…,xm)

x2= 2(x1,x2,…,xm)

…………………… (6.5)

xm= m(x1,x2,…,xm)

Поставив значения x1,x2,…,xm, даваемые формулами (6.5) в y=f0(x), т.е. рассмотрев композицию функции f0 и 1, получили функцию

y= f0(1(xm+1,…,xn),…, m(xm+1,…,xn), xm+1,…,xn)==0(xm+1,…,xn) (6.6)

 

от n-m переменных xm+1,…,xn,определенную и непрерывно дифференцируемую в некоторой окрестности точки x(0)=(x1(0),x2(0),…,xn(0)) в (n-m)–мерном пространстве Rn-m.

Поскольку, согласно теореме о неявных функциях, условия (6.3) и (6.5) равносильны,то справедливо следующее утверждение.

Точка x(0) является точкой (строгого) условного экстремума для функции g относительно уравнений связи (6.3) в том и только том случае, когда x(0) является точкой обычного (строгого) экстремума (6.6).

Если x(0)– точка обычного экстремума функции g, то она является стационарной точкой этой функции:

dg (x(0))=0 (6.7)

Напомним, что дифференциал – линейная однородная функция и его равенство нулю означает равенство нулю этой функции при любых значениях ее аргументов, в данном случае – при любых dxm+1, dxm+2,…, dxn.Это возможно,очевидно, в том и только том случае, когда все коэффициенты при этих аргументах, т.е. производные g/ xm+k, k=1,2,…,n-m обращаются в нуль в точке x(0).Условие (6.7) необходимо для условного экстремума в точке x(0).

Таким образом, метод, основанный на решение системы уравнений (6.3) через элементарные функции часто невозможно или весьма затруднительно; поэтому желательно располагать методом, позволяющим найти условный экстремум не решая системы (6.3).Такой способ,так называемый метод множетелей Лагранжа, изложен в следующем пункте.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных