Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Обмен белков и изменение с возрастом потребности организма в белках.




Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ,— белки. Продукты расщепления белков в пищеварительном тракте — аминокислоты всасываются в кровь, из этих аминокислот синтезируются белковые структуры организма. Аминокислоты бывают незаменимые (при их отсутствии синтез белков в организме резко нарушается) и заменимые (могут быть заменены другими или синтезированы в самом организме в процессе обмена веществ). Белки пищи, содержащие весь необходимый набор аминокислот для нормального синтеза белка организма, называют полноценными. Наиболее высокая биологическая ценность у белков яиц, мяса, молока, рыбы. В организме ребенка идут интенсивно процессы роста и формирования новых клеток и тканей. Это требует поступления в детский организм относительно большего количества белка, чем у взрослого человека. Чем интенсивнее идут процессы роста, тем больше потребность в белке.

Особенности жирового обмена в детском возрасте. Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь. В организме из этих веществ, а также из продуктов обмена углеводов и белков синтезируется жир, который используется организмом прежде всего как богатый источник энергии. При распаде жира выделяется в 2 раза больше энергии, чем при распаде равного количества белков и углеводов. Кроме того, жир является обязательной составной частью клеточных структур: цитоплазмы, ядра и клеточной мембраны, особенно нервных клеток. Не израсходованный в организме жир откладывается в запас в виде жировых отложений.

С жирами в организм поступают растворимые в них витамины (витамины A, D, Е и др.), имеющие для человека жизненно важное значение. На 1 кг массы взрослого человека в сутки должно поступать с пищей 1,25 г жиров (80—100 г в сутки). Конечные продукты обмена жиров — углекислый газ и вода. В организме ребенка первого полугодия жизни за счет жиров покрывается примерно на 50% потребность в энергии. Без жиров невозможна выработка общего и специфического иммунитета. Обмен жиров у детей неустойчив, при недостатке в пище углеводов или при усиленном их расходе быстро истощаются депо жира. Всасывание жиров у детей идет интенсивно. При грудном вскармливании усваивается до 90% жиров молока, при искусственном — 85—90%; у старших детей жиры усваиваются на 95-97%.

Обмен углеводов и его возрастные особенности. Углеводы являются основным источником энергии. Наибольшее количество углеводов содержится в злаках, картофеле. Богаты углеводами также овощи и фрукты. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками организма. При отсутствии углеводов в пище они могут вырабатываться из продуктов распада белков и жиров. Особенно чувствительной к снижению уровня глюкозы в крови (глипогликемии) является центральная нервная система. Уже незначительное снижение сахара в крови вызывает слабость, головокружение, при значительном падении углеводов наступают разные вегетативные расстройства, судороги, потеря сознания. Углеводы обладают способностью быстро распадаться и окисляться. Быстрота распада глюкозы и возможность быстрого извлечения и переработки ее резерва — гликогена создают условия для экстренной мобилизации энергетических ресурсов при резком эмоциональном возбуждении, интенсивных мышечных нагрузках. При сильном утомлении во время продолжительных спортивных соревнований прием нескольких кусочков сахара улучшает состояние организма.

Интенсивный рост детского организма требует значительных количеств пластического материала — белков и жиров. Поэтому у детей образование углеводов из белков и жиров ограниченно.

Водно-солевой обмен. Значение воды и минеральных солей в процессе роста и развития ребенка. Хотя ни вода, ни минеральные соли не являются источниками энергии, их поступление и выведение из организма является условием его нормальной жизнедеятельности. Ведь все превращения веществ в организме совершаются в водной среде. Вода растворяет пищевые вещества, поступившие в организм вместе с минеральными веществами, она принимает участие в построении клеток и во многих реакциях обмена. Вода и минеральные соли являются основной составной частью плазмы крови, лимфы и тканевой жидкости, создают в основном внутреннюю среду организма. Вода участвует в регуляции температуры тела, испаряясь, она предохраняет тело от перегрева. Все пищеварительные соки содержат воду и минеральные соли. Вода составляет большой процент массы тела (у взрослого человека примерно 65%, у детей 75—80%). Особенно велико содержание воды в крови (92%). Человек без воды может существовать значительно меньше времени, чем без пищи,— всего несколько дней. При нормальной температуре окружающей среды и нормальном пищевом режиме потребность воды у взрослого человека составляет 2—2,5 л. Это количество воды поступает из следующих источников: 1) воды, потребляемой при питье (около 1 л); 2) воды, содержащейся в пище (около 1 л); 3) воды, которая образуется в организме при обмене белков, жиров и углеводов (300—350 см3). Если воды выводится из организма больше, чем поступает в него, возникает чувство жажды. Отношение количества потребленной воды к количеству выделенной составляет водный баланс. Организм ребенка быстро теряет и быстро накапливает воду.

Организм нуждается в постоянном поступлении минеральных солей. Минеральные вещества необходимы для нормального функционирования организма. Так, с наличием минеральных веществ, содержащих натрий, калий, хлор, связано явление возбудимости — одно из основных свойств живого. Рост и развитие костей, мышц зависят от содержания минеральных веществ. Они определяют реакцию крови (рН), способствуют нормальной деятельности сердца и нервной системы, используются для образования гемоглобина (железо), соляной кислоты желудочного сока (хлор). Минеральные соли создают столь необходимое для жизнедеятельности клеток определенное осмотическое давление. В молоке имеется идеальное соотношение солей кальция и фосфора, поэтому включение молока в рацион питания детей обязательно.

Витамины и их значение. Витамины — органические соединения, совершенно необходимые для нормального функционирования организма. Витамины входят в состав многих ферментов. Это объясняет важную роль витаминов в обмене веществ. Витамины способствуют действию гормонов, а также повышению сопротивляемости организма к неблагоприятным воздействиям внешней среды (инфекция, действие высокой и низкой температуры и т.д.). Они необходимы для стимулирования роста, восстановления тканей и клеток после травм и операций. В отличие от ферментов и гормонов, большинство витаминов не образуется в организме человека. Главным их источником являются овощи, фрукты и ягоды. Содержатся витамины также в молоке, мясе, рыбе. Витамины требуются в очень небольших количествах, но их недостаточность или отсутствие в пище нарушает образование соответствующих ферментов.

Вопрос №13. Строение и свойства нервной ткани. Процессы в нервной системе.

Нервная ткань состоит из совокупности нейронов и глиальных клеток.

Нейрон — структурная и функциональная единица нервной системы, приспособленная для осуществления приема, обработки, хранения, передачи и интеграции информации. Они представляют собой разнообразные по форме клетки, также как и другие клетки организма они состоят из клеточной мембраны, ядра, ядрышка, клеточных органоидов. Особенностью их строения являются большое количество клеточных отростков и наличие в цитоплазме специфических образований: тигроидного вещества и нейрофибрилл.

Тигроидное вещество содержит рибонуклеиновые кислоты, количество которых увеличивается до полового созревания, а затем находится на относительно постоянном уровне, если условия существования организма благоприятны. В экстремальных условиях содержание РНК в тигроидном веществе может уменьшиться или совсем исчезнуть, что приведет к гибели нейрона.

Нейрофибриллы - длинные белковые молекулы, расположенные в теле и отростках нейрона, и исчезающие при его длительной работе. Они являются специфическими метаплазматическими образованиями и служат проводниками возбуждений.

Нейрон имеет два вида отростков: аксоны и дендриты.

Аксон — нитевидный отросток, начинающийся от тела клетки. По сравнению с диаметром длина его очень велика и может достигать 1,5 м. Конец аксона сильно ветвится, образует кисточку из конечных ветвей (окончания аксона, или терминали), образующих контакты с многими сотнями клеток. Аксон является проводящей частью нейрона, он осуществляет проведение возбуждения от рецептора к нервным клеткам, от одной нервной клетки к другой и от нейрона к исполнительному органу (мышцы, железы). Аксон, покрытый оболочками, называют нервным волокном.

Дендриты — короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. На дендритах имеются выросты (шипики). Ветвистость дендритов и наличие шипиков значительно увеличивают поверхность дендрита в сравнении с телом клетки и создают условия для размещения на дендритах большого числа контактов с другими нервными клетками (синапсов).

Синапс - зона функционального контакта двух нейронов. На теле одного нейрона может быть 100 и более синапсов, а на дендритах - несколько тысяч. Дендриты одного нейрона контактируют с сотнями и тысячами других клеток. Их строение определяет их специализированную роль в восприятии поступающих сигналов. Синапс образован двумя мембранами, между которыми имеется синаптическая щель. Пресинаптическая мембрана находится на нервных окончаниях аксона, которые в ЦНС имеют вид пуговок, колечек или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, к которому передается нервный импульс.

Закодированная в нервных импульсах информация передается с одного нейрона на другой с помощью медиаторов - особых веществ, способных вызывать активное состояние клеток постсинаптической мембраны. Медиатор располагается в синаптических пузырьках в пресинаптической мембране. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин и норадреналин.

В центральной нервной системе наряду с возбудительными существуют тормозные синапсы, из синаптических бляшек которых освобождается тормозной медиатор. В настоящее время в ЦНС обнаружено два таких медиатора — гамма-аминомасляная кислота и глицин. На каждой нервной клетке расположено множество возбуждающих и тормозных синапсов, что создает условия для их взаимодействия и в конечном счете для различного характера ответа на пришедший сигнал

Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации.

Число и размеры синапсов в процессе развития человека значительно увеличиваются. У взрослого на одном нейроне может быть 10 тыс. синапсов. Число межнейронных связей зависит от процессов обучения: чем оно интенсивнее, тем больше синапсов образуется. На ранних этапах развития первыми созревают возбудительные синапсы, тормозные синапсы формируются позже. С их созреванием связано усложнение процессов переработки информации.

Нервные волокна - отростки нервных клеток, покрытые оболочками. Тела нейронов и большая часть их дендритов сосредоточены в спинном и головном мозге. Некоторые нервные волокна имеют оболочку, состоящую из жироподобного вещества - миелина. Оно выполняет трофическую, защитную и электроизолирующую функции. Волокна, покрытые миелином, называют мякотными, а непокрытые - безмякотными. Скорость проведения возбуждения в мякотных волокнах достигает 120 м/с, в безмякотных 1-30 м/с.

На ранних этапах онтогенеза миелиновая оболочка отсутствует, она интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения по нервному волокну. Она развивается в первые два-три года жизни, ее формирование зависит от условий жизни ребенка. В неблагоприятных условиях процесс миелинизации может замедляться на несколько лет, что затрудняет управляющую и регулирующую деятельность нервной системы.

Миелинизация раньше всего отмечена у периферических нервов, затем ей подвергаются волокна спинного мозга, стволовой части головного мозга, мозжечка и позже волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) в течение первых месяцев жизни ребенка. К. трехлетнему возрасту в основном завершается миелинизация нервных волокон, хотя рост миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.

Объединяясь друг с другом, нервные волокна образуют нервы, которые в виде белых нитей видны невооруженным глазом. Нервы связывают все участки нашего тела с центральными отделами нервной системы. Основная функция нервных волокон и нервов - проведение нервных импульсов.

Различают три вида нервов:

1. Чувствительные или афферентные - проводят нервные импульсы в ЦНС (центростремительные нервы)

2. Двигательные или эфферентные - проводят нервные импульсы от ЦНС к периферическим органам (центробежные нервы)

3. Смешанные - состоят из чувствительных и двигательных волокон.

Глиальные клетки (нейроглии) более многочисленны, чем нейроны. Они составляют половину объема ЦНС. Они способны к делению в течение всей жизни. По размеру глиальные клетки в 3-4 раза меньше нервных. Они выполняют опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами) функции.

В процессе развития человека соотношение между глиальными и нервными клетками значительно меняется. У новорожденного количество нейронов выше, чем глиальных клеток, к 20-30 годам их соотношение становится равным, после 30 лет количество глиальных клеток увеличивается.

Основные свойства и функции элементов нервной системы -возбудимость, проводимость, лабильность.

Возбудимость -способность клеток быстро реагировать на раздражение посредством изменения электрических свойств мембраны клеток и обмена веществ. Мерой возбудимости является порог раздражения — та минимальная сила раздражителя, которая вызывает возбуждение. Наиболее общим и естественным раздражителем для всех клеток нашего тела является нервный имульс. Раздражитель меньшей силы называется подпороговым, а большей - надпороговым. Последние вызывают более значительные ответные изменения в жизнедеятельности ткани и организма.

Возникновение и распространение возбуждения связано с изменением электрического заряда живой ткани, с так называемыми биоэлектрическими явлениями. Если возбудимую клетку подвергнуть действию достаточно сильного раздражителя, то возникает быстрое колебание мембранного потенциала (разность потенциалов, регистрируемая по обе стороны мембраны), называемое потенциалом действия. Причина возникновения потенциала действия— изменение ионной проницаемости мембраны.

Проводимость - способность живой ткани проводить возбуждение. Проведение возбуждения происходит за счет распространения нервного импульса, который переходит через синапс на соседние клетки и может передаваться в любой отдел нервной системы.

Возникшее в месте возбуждения изменение электрического заряда мембраны вызывает изменение электрических зарядов в соседнем участке, а те в свою очередь - в следующем, и так по всей цепи нейронов или по отросткам нервной клетки распространяется волна возбуждения. Возбуждение от одной нервной клетки к другой передается только в одном направлении: с аксона одного нейрона на тело клетки и дендриты другого нейрона.

Лабильность - способность возбудимой ткани воспроизводить максимальное количество потенциалов действия в единицу времени. Нервная ткань обладает наибольшей лабильностью, у мышечной ткани она значительно ниже. Функциональное состояние нервной ткани зависит от ее лабильности. Патологические процессы и утомление приводят к снижению лабильности, а систематические специальные тренировки - к ее повышению.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных