Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






САР электромашинного регулирования по угловой скорости генератора (тахометрическая схема). 2 страница




Настройка регулятора осуществляется движком Дв3, при перемещений которого вправо уменьшается сопротивление R3′, что вызывает снижение установившейся угловой скорости, как это следует из равенства (8.3).

Для обеспечения устойчивой работы регулятора предусмотрена стабилизирующая катушка , присоединенная через конденсаторы и к тахогенератору и движку Дв2. При установившемся режиме ток в катушке равен нулю.

В процессе изменения угловой скорости и координаты х поршня П1 через конденсаторы и стабилизирующую катушку протекает ток. Рассмотрим уравнения переходного процесса.

Измерительным органом регулятора является электромагнит с тахогенератором, пружиной и золотником. Его работа описывается следующими уравнениями.

Уравнение цепи катушки L2 (если пренебречь взаимоиндукцией между катушками и )

(8.4)

Ток в цепи катушки L3 зависит от изменения напряжения на обкладках конденсаторов C1 и C2. Напишем уравнения для цепи конденсаторов C1 и C2 в соответствии с обозначениями на рис. 8.4:

; (8.5)

; (8.6)

, (8.7)

где – сопротивление стабилизирующей катушки; UGB – напряжение источника тока.

При равномерной намотке провода на сопротивлении R2, пренебрегая влиянием тока в C1 на падение напряжения в R2 и принимая за начало отсчета координаты х исполнительного органа крайнее правое положение, соответствующее выключенной подаче топлива, при котором движок Дв2 находится на крайнем правом зажиме потенциометра R2, получим

(8.8)

где b ст – постоянный коэффициент.

Продифференцировав равенства (8.5), (8.6) и (8.8), получим (при UGB=const) уравнения:

(8.9)

. (8.10)

Для обеспечения достаточной эффективности действия стабилизирующей катушки необходимо получить наибольший ток в ней при относительно малом ускорении двигатель-генератора и небольшой скорости поршня П1. Поэтому дроссели L2 и L3 следует выполнять с возможно меньшими индуктивностями и сопротивлениями. Если в первом приближении в уравнениях (8.9) и (8.10) пренебречь слагаемыми с параметрами дросселей в силу их малости, то с учетом равенства (8.7) уравнения в отклонениях для токов цепей дросселей L2 и L3 примут вид:

(8.11)

и . (8.12)

Роль муфты в центробежном измерителе для данного регулятора выполняет золотник. Он находится под действием силы электромагнита Fэм и поддерживающей силы Fn. В установившемся режиме работы золотник занимает положение zн (рис. 8.5), и силы, действующие на него, уравновешиваются. Устойчивое равновесие отдельно взятого измерителя возможно, если крутизна характеристики поддерживающей силы больше крутизны характеристики электромагнита. Сила электромагнита, как правило, увеличивается при притяжении якоря, т. е. при опускании золотника. Если изменение воздушного зазора при перемещении золотника мало в сравнении с начальным зазором, электромагнит имеет пологую характеристику. Поддерживающая сила равна сумме веса частей, связанных с золотником, и силы пружины. Крутизна ее зависит главным образом от жесткости пружины.

В переходном процессе движение золотника описывается уравнением

, (8.13)

где тз – масса подвижных частей, связанных с золотником; Fтр – сила трения в золотнике и электромагните.

Сила электромагнита зависит нелинейно от токов в дросселях L2 и L3 и от положения якоря. При анализе линейное отклонение силы электромагнита можно представить в виде

,

где – определяются по опытным или расчетным характеристикам электромагнита для zн.

Отклонение поддерживающей силы

.

С учетом вязкого и сухого трения силу трения можно представить в виде

.

Подставив отклонения сил в равенство (8.69), получим уравнение движения золотника:

. (8.14)

Сравнивая это уравнение с уравнением (3.3) центробежного измерителя, видно, что левые части их практически одинаковы, но в правой части уравнения (8.14) вместо отклонения угловой скорости имеются отклонения токов в катушках, связанных с угловой скоростью и координатой исполнительного органа уравнениями (8.4), (8.7), (8.9) и (8.10). Полная система уравнений измерительного органа достаточно сложна, т.к. состоит из пяти уравнений 7-го порядка.

Одним из достоинств рассматриваемой системы является отсутствие центробежных грузов, представляющих собой основную массу в центробежном измерителе, а также рычагов и шарниров, создающих дополнительную силу трения.

Для качественного приближенного анализа динамики измерителя примем массу и силы трения равными нулю. Тогда приближенное уравнение движения золотника получим в форме:

. (8.15)

Исключив из уравнений (8.11), (8.12) и (8.15) токи в катушках, получим приближенное уравнение измерителя

 

(8.16)

Приближенное уравнение (8.16) позволяет оценить влияние стабилизирующей катушки и конденсаторов на процесс регулирования. Первый член правой части представляет собой основное воздействие регулятора: при отклонении угловой скорости золотник открывает отверстие и регулятор начинает изменять подачу топлива или возбуждение генератора. Одной из главных причин возникновения колебаний в астатических регуляторах является перерегулирование, возникающее вследствие того, что в начале процесса регулирования, когда Δ пд мало, проходное сечение золотника и скорость исполнительного органа также малы, что замедляет процесс уравнивания моментов двигателя и нагрузки и приводит к увеличению Δ пд. Максимальные Δ пд и скорость исполнительного органа достигаются, когда эти моменты уравновешиваются и, следовательно, исполнительный орган проходит положение нового установившегося режима.

Второй член представляет собой воздействие, находящееся в прямой зависимости от ускорения двигатель-генератора. Оно пропорционально разности моментов двигателя и генератора и, следовательно, является наибольшим в начале изменения режима двигателя или генератора. В процессе регулирования разность моментов уменьшается и при уравновешенности двигатель-генератора это воздействие равно нулю. Таким образом, воздействие по производной увеличивает смещение золотника в начальный момент, ускоряя начало процесса уравнивания моментов двигателя и генератора, и замедляет скорость исполнительного органа при подходе к положению равновесия. Такое воздействие снижает динамическую ошибку, повышает быстродействие и степень устойчивости.

Третий член представляет собой гибкую обратную связь исполнительного органа с измерительным, аналогичную изодрому. При увеличении угловой скорости (Δ пд >0) исполнительный орган перемещается в направлении уменьшения подачи топлива (или увеличения возбуждения). При этом и обратная связь стремится уменьшить Δ z и скорость исполнительного органа тем в большей степени, чем больше эта скорость. Таким образом, обратная связь по перемещению исполнительного органа является отрицательной и замедляет процесс регулирования главным образом вблизи нового положения. Обе дополнительные связи действуют только в переходном процессе и не влияют на статические характеристики системы регулирования. Их эффективность зависит в основном от величин емкостей.

Механизм ограничения подачи топлива по конструкции аналогичен регулятору скорости, но имеет один дроссель L1, который последовательно с реостатами R4, R5 и R3" включён на зажимы аккумуляторной батареи. Ток в ней

, (8.73)

где RL1 – активное электрическое сопротивление дросселя L1.

При перемещении движка ДЗ вправо для снижения угловой скорости увеличивается часть реостата R3", введенная в цепь дросселя L1. Ток в нём уменьшается, вследствие чего золотник поднимается под действием пружины и поршень П2 перемещается вправо, передвигая упор У и уменьшая предельную подачу топлива. Одновременно перемещается движок Д4, уменьшая сопротивление в цепи дросселя L1. Поршень П2 останавливается, когда восстанавливается первоначальное значение тока дросселя L1 и золотник закрывает отверстия. Таким образом, каждому положению движка Д3 соответствует определенное положение движка Д4 и упора У. Этим достигается изменение крутящего момента теплового двигателя в зависимости от изменения угловой скорости. Желательная зависимость Мд(пд) устанавливается настройкой сопротивлений R4, и R5.

Неравномерность регулирования определяется нечувствительностью измерительного органа – тахогенератора, электромагнита и золотника. Отклонения угловой скорости могут быть вызваны изменением магнитного потока тахогенератора и падением напряжения на щетках. Для снижения этих отклонений тахогенератор выполняется трехфазным с постоянными магнитами. Для питания катушки ток его выпрямляется по мостовой схеме. Выпрямитель может вносить некоторое отклонение тока вследствие изменения падения напряжения его в зависимости от приложенного напряжения и в результате старения. Изменение температуры катушки дросселя L1, мертвый ход и трение золотника также увеличивают неравномерность регулирования. Однако все эти отклонения могут быть сделаны достаточно малыми.

Достоинствами системы регулирования являются объединение регуляторов теплового двигателя и генератора в единую конструкцию, что избавляет от взаимной настройки их введение регулирования по производной, а также возможность установить практически любую желательную зависимость Мд(пд). С другой стороны, схема сложна. В связи с необходимостью управления несколькими локомотивами по системе многих единиц практически вместо движка Д3 применяются реле, переключающие ступени сопротивления R3. В схеме тепловоза для получения восьми ступеней настройки регулятора использованы три четырехконтактных реле.


Выше указывалось, что для уменьшения кратности изменения напряжения генератора (или увеличения кратности изменения скорости при полной мощности дизеля) применяется ослабление поля тяговых электродвигателей и переключение группировок их. Как правило, эти операции по управлению тяговыми, электродвигателями осуществляются автоматически в зависимости от режима генератора или скорости движения. Во всех советских и большинстве зарубежных построенных тепловозах схемы управления тяговыми электродвигателями не связаны с системами автоматического регулирования генератора.

Переключение группировок двигателей на большее число параллельных цепей и переходы на ступени большего ослабления поля их целесообразно осуществлять, когда напряжение генератора приближается к максимальному значению» а обратные переходы – когда ток генератора, увеличиваясь, достигает величины, близкой к длительному току. Это справедливо, если дизель-генератор работает при полной мощности. При сниже­нии его скорости напряжение и ток прямого и обратного перехода целесообразно снижать. При всех скоростях двигатель-генератора прямой переход осуществляется при возбуждении генератора близком к наибольшему, а обратный – при пониженном возбуждении. После каждого перехода ток возбуждения генератора должен измениться, т. е. система автоматического регулирования генератора (или система саморегулирования дизель-генератора) приходит в действие, изменяя ток возбуждения генератора.

В принципе возможно связать систему регулирования мощности двигатель-генератора со схемой управления тяговыми электродвигателями в одну систему объединенного регулирования теплового двигателя, генератора и тяговых электродвигателей. Такие системы применены на некоторых английских и французских тепловозах. В выполненных системах такого вида переключение группировок не применяется и объединенная система регулирования поддерживает постоянную мощность теплового двигателя путем изменения возбуждения генератора и тяговых электродвигателей при неизменной подаче топлива, а в режимах, когда вследствие ограничений по возбуждению генератора и тяговых электродвигателей электропередача не может полностью нагрузить тепловой двигатель, система регулирования последнего поддерживает постоянную скорость посредством изменения подачи топлива.

Каждому положению рукоятки контроллера управления, как и в других системах регулирования, соответствует настройка объединенного регулятора на определенную угловую скорость теплового двигателя. Ниже кратко рассмотрен принцип действия некоторых систем объединенного регулирования.

 

Схема объединенного регулирования с общим контроллером для возбуждения генератора и тяговых двигателей

На рис. 8.6 изображена в упрощенном виде принципиальная схема регулирования, примененная на некоторых английских тепловозах. На схеме показан один тяговый двигатель с двумя ступенями ослабления поля. В действительной схеме используется несколько двигателей с бόльшим числом ступеней ослабления поля.

Регулятор мощности (РМ) состоит из регулирующего реостата РР, включенного в цепь обмотки Н независимого возбуждения генератора, и кулачкового вала. Часть кулачковых шайб регулятора мощности служит для переключения ступеней регулирующего реостата. На схеме они условно представлены движком Дв реостата. Кулачковые шайбы (А и Б) используются для замыкания контактов, шунтирующих обмотки возбуждения тяговых двигателей. Число шайб для каждого двигателя равно числу ступеней ослабления поля и количество таких групп равно числу двигателей.

Кулачковый вал регулятора мощности получает вращение от гидравлического привода, управляемого штоком сервомотора регулятора дизеля.

Схема действует следующим образом. При пуске тепловоза кулачковый вал находится в положении 0, когда сопротивление R1 полностью введено в цепь обмотки возбуждения генератора (движок в крайнем правом положении). При повышении скорости движения поезда регулятор увеличивает возбуждение генератора (движок перемещается влево). Устройство, состоящее из трех электрогидравлических вентилей (на рис. 199 оно не показано), управляет скоростью поворота кулачкового вала так, что ток генератора поддерживается приблизительно постоянным. При этом регулятор дизеля увеличивает подачу топлива. Когда она становится максимальной, кулачковым валом регулятора мощности начинает управлять регулятор дизеля. Возбуждение генератора увеличивается по мере возрастания скорости движения за счет уменьшения сопротивления R1.

Если ток генератора продолжает уменьшаться, когда кулачке; вый вал выведет все сопротивление R1 то вал регулятора поворачивается дальше. При этом в цепь возбуждения генератора вводится небольшое сопротивление R2, а кулачковая шайба А включает первую ступень ослабления поля (замыкается контакт 1). Дальнейший разгон происходит опять за счет увеличения возбуждения генератора. После перехода положения максимального возбуждения генератора вводится сопротивление R3 и шайба Б замыкает контакт 2, т. е. происходит переключение на следующую ступень ослабления поля.

В случае увеличения тока генератора (например, при входе поезда на подъем) шток регулятора дизеля включает гидропривод регулятора мощности для движения в обратном направлении. Кулачковый вал сначала уменьшает возбуждение генератора, затем выключает последнюю ступень ослабления поля, одновременно увеличивая возбуждение генератора и т. д.

Преимуществом схемы является отсутствие дополнительных аппаратов и других элементов для управления тяговыми двигателями. Отпадает также необходимость настройки схемы управления двигателями, поскольку режим переключений задается кинематически на определенных положениях регулятора. Недостаток ее заключается в громоздкости регулятора мощности вследствие большого тока возбуждения генератора и наличия силовых контактов для шунтирования обмоток возбуждения двигателей.

 

Схема управления контакторами ослабления поля от объединенного регулятора дизель-генератора.

В качестве примера рассмотрим примененную на французских тепловозах серии 68000 схему (рис. 8.7), в которой регулятор мощности с 40 ступенями регулирующего реостата включен в цепь одной из двух независимых обмоток возбуждения генератора. На регуляторе имеются дополнительные контакты в положении максимального возбуждения (R0) и некоторого промежуточного положения (R28). Регулятор мощности приводится в действие от гидравлического сервомотора регулятора дизеля. Если подача топлива превышает величину, установленную для данной угловой скорости дизеля, движок регулятора мощности перемещается к R0, при пониженной подаче топлива – R40. Когда при увеличении скорости движения поезда регулятор мощности, увеличивая возбуждение генератора, достигает положения R0,, регулятор получает сигнал к перемещению движка в обратном направлении до положения R28, где замыкание контакта дает сигнал к включению группового контактора 1 первой ступени ослабления поля всех двигателей. При дальнейшем увеличении скорости регулятор вновь достигает положения R0, и вновь получает сигнал к возвращению в положение R28. При этом включается групповой контактор 2 второй ступени ослабления поля. Обратный переход осуществляется под действием реле тока. Когда ток генератора вследствие уменьшения скорости двигателя увеличивается до 2700 A (длительный ток равен 2640 A ), контакты реле тока отключают контактор первой ступени ослабления поля. Ток генератора уменьшается, реле отпадает, но контактор не включается, если реостат не на положении R28. Если при дальнейшем снижении скорости ток вновь достигает 2700 A, реле тока отключает контактор второй ступени ослабления поля;

На английских тепловозах применяется схема, где контакт на регуляторе мощности в положении максимального возбуждения включает серводвигатель контроллера управления, который управляет контакторами ступеней ослабления поля. В схеме используются четыре ступени ослабления поля.

1. Системы регулирования трансмиссий переменного тока.

2. Структурная схема силовой цепи.

3. Передачи переменно-переменного тока.

4. Передачи переменно-постоянного тока


Трансмиссии постоянного тока являются наиболее простыми, так как двигатели питаются непосредственно от генератора без промежуточных силовых преобразователей и любые характеристики трансмиссии получаются регулированием магнитных потоков генератора и двигателей по цепям возбуждения, мощность которых не превышает 1…2,5% от номинальной мощности тяговых машин.

Основным способом регулирования скорости транспортных средств с асинхронными двигателями является изменение частоты тока, питающего двигатели независимо от частоты тока генератора, приводимого ДВС. Для этого используют тиристорные преобразователи, в которых частоту выходного тока можно изменять независимо от входной.

В качестве примера на рис. 9.1 приведена обобщённая схема привода теплоэлектрического подвижного состава с асинхронными двигателями (АД) и преобразователями частоты ПЧ. ДВС приводит во вращение вал тягового генератора Г, в качестве которого может использоваться как машина постоянного, так и переменного тока. В силу низкой надёжности коллекторно-щёточного узла первых их применение неперспективно, поэтому далее рассматриваем только синхронные генераторы.

Трёхфазное напряжение от генератора подводится к ПЧ, который может быть выполнен по схеме со звеном постоянного тока (ПЧПТ) или с непосредственной связью выходной и входной цепей (НПЧ).

В ПЧПТ трёхфазное напряжение генератора преобразуется выпрямителем в постоянное, подаваемое на вход инвертора, где преобразуется в трёхфазное переменной частоты. Нагрузкой инверторов являются тяговые АД.

В НПЧ одни и те же тиристоры поочерёдно работают в выпрямительном и инверторном режимах. Управление тиристорами осуществляется как по частоте входного тока (генератора), так и по выходной частоте, которая задаётся системой управления.

При АД возможны три варианта исполнения ПЧ:

– один преобразователь на общую нагрузку;

– несколько параллельно работающих преобразователей на общую нагрузку;

– индивидуальная нагрузка преобразователей.

Приведённый на рис. 9.1 вариант привода относится к первой разновидности.

Каждый ПЧ имеет свою систему управления СУ, подающую в определённой последовательности отпирающие импульсы на соответствующие тиристоры преобразователя. Для управления СУ используется САУПЧ, а в случае применения синхронных двигателей необходимо предусмотреть и систему управления возбуждением САУВД. Для управления тяговым генератором используется система управления САУГ, а для управления тепловым двигателем – СУТД, на которую поступает сигнал от датчика частоты вращения (ДЧВ) вала ДВС.

Все системы могут работать самостоятельно, однако целесообразным следует считать связанное управление.

 

Из теории асинхронных двигателей (АД) известно, что при частотном управлении их характеристики определяются тремя переменными: частотой напряжения питания f1 или относительным параметром α= f1/f, напряжением питания U1 или относительным параметром γ= U1/U, частотой скольжения fs (частотой ротора f2) или параметром абсолютного скольжения β= fs /f= α s, который можно рассматривать как промежуточный параметр нагрузки. Под статическими характеристиками частотного регулирования будем понимать зависимости параметров АД от частоты α в заданном диапазоне изменения частот и нагрузок, обеспечивающие требуемые тяговые характеристики автономного транспортного средства.

Статическая характеристика γ(α), определяемая как закон частотного управления, в данном представлении является одной из основных характеристик регулирования АД.

Другой важной характеристикой регулирования является зависимость μ ( α ) =[ М/Мн ] ( α ). Её вид определяется тяговой характеристикой F(v) автономного транспортного средства. Характеристика μ ( α ) содержит три участка (см. рис. 9.2): постоянства пускового момента μ=μ пред (линия АБ), постоянства мощности (кривая Б-В-Г); ограничения частоты α=α макс (линия Г-Д).

Для формирования характеристики μ ( α ) с учётом поддержания на заданном уровне значений КПД, коэффициента статической перегрузки и коэффициента мощности необходимо одновременное регулирование параметров α, β, γ и др., связанных между собой сложными функциональными зависимостями.

На рис. 9.3 приведена упрощенная структурная схема силовой цепи трансмиссии переменного тока. Входными параметрами для синхронного генератора СГ являются угловая частота генератора ω г и ток возбуждения iвозб г, регулируемым параметром – напряжение генератора Uг (или γ г).

Входными параметрами преобразователя частоты ПЧ являются напряжение γ г и частота следования импульсов управления fз, регулируемым параметром – частота α питающего АД напряжения γ.

Полная механическая мощность на валу АД определяется соотношением

Р=Р2мех≡М ω.

Полезная мощность, реализуемая генератором

Р2≡М2 ω = η Р1,

а приведённая . (9.1)

Момент на валу генератора ,

или в относительных единицах μ 2 = μη 2 / η , (9.2)

где η 2 – КПД, учитывающий только механические потери АД.

Угловая скорость ротора АД в относительных единицах с учётом выражений (9.1) и (9.2) определяется как

.

С учётом того, что электромагнитный момент, выраженный в относительных единицах, равен , расчётная формула для определения относительной угловой скорости преобразуется к виду

. (9.3)

Из последнего соотношения видно, что входными параметрами при регулировании АД являются α, β и γ, а регулируемыми – момент μ (угловая скорость ω*). Основное внешнее возмущающее воздействие, действующее на АД, является моментом сопротивления вращению, который определяет возмущающие воздействия на остальные агрегаты силовой цепи трансмиссии.


При движении машины по пути с переменным сопротивлением в общём случае изменяют я одновременно частота тока, напряжение, подводимое к асинхронным двигателям, магнитный поток и сила тока в их обмотках. Водитель, управляя педалью, задает мощность теплового двигателя. При заданном положении педали величины, характеризующие режимы работы двигателей, должны изменяться автоматически. В приводе с двигателем АД и преобразователем ПЧПТ имеются два регулируемых параметра: сила тока возбуждения генератора частота тока на выходе инвертора. Соответственно этому помимо регулятора теплового двигателя в приводе предусматривается и система автоматического управления генератором (САУГ) и система управления преобразователем (САУПЧ). Эти системы выполняют следующие функции: 1) поддержание постоянной мощности теплового двигателя; 2) ограничение силы тока и напряжения генератора и преобразователя; 3) если тепловой двигатель работает с переменной скоростью, программное управление моментом сопротивления генератора в зависимости от частоты вращения по линии наибольшей экономичности; 4) управление режимом асинхронных двигателей по определенной программе, обеспечивающей работу их с наибольшим к. п. д.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных