Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Проверка модели Большого взрыва




Изучая Вселенную с помощью мощнейших телескопов, астрономы могут видеть свет, испущенный галактиками и квазарами через несколько миллиардов лет после Большого взрыва. Это позволяет им проверить предсказания теории Большого взрыва о расширении Вселенной вплоть до столь ранних этапов ее эволюции, и результаты всех проверок оказываются положительными. Чтобы проверить теорию для еще более ранних этапов, физики и астрономы вынуждены пользоваться менее прямыми методами. Один из наиболее тонких подходов опирается на понятие реликтового космического излучения.

Если читателю приходилось когда-нибудь ощупывать только что накачанную до предела велосипедную шину, он знает, что шина кажется теплой. Часть энергии, израсходованная на накачку колеса насосом, перешла в теплоту, и температура шины увеличилась. Это есть следствие общего принципа:


226 Часть IV. Теория струн и структура пространства-времени

для широкого класса условий при сжатии тел происходит их нагревание. И наоборот, если не препятствовать расширению, произойдет охлаждение. На этих принципах устроены кондиционеры и холодильники, в которых вещества типа фреона периодически подвергаются сжатию и расширению (сопровождающимся парообразованием и конденсацией), направляя поток теплоты в нужную сторону. Хотя речь идет о простых явлениях земной физики, оказывается, что они обладают глубоким смыслом в космосе как целом.

Выше говорилось о том, что после объединения электронов и ядер в атомы фотоны могут беспрепятственно путешествовать во Вселенной. Это означает, что Вселенная заполнена «газом» фотонов, движущихся во всевозможных направлениях и равномерно распределенных в космическом пространстве. Когда Вселенная расширяется, газ свободно летящих фотонов расширяется вместе с ней, так как Вселенная, по существу, является резервуаром для этого газа. Подобно тому, как температуры более привычных для нас газов (например, воздуха в колесе) понижаются при расширении, температура этого фотонного газа тоже падает при расширении Вселенной. Уже давно, после работ Георгия Гамова и его студентов Ральфа Альфера и Роберта Хермана в 1950-х гг., а также Роберта Дикке и Джима Пиблза в середине 1960-х гг., физики поняли, что современная Вселенная должна быть наполнена почти однородным составом из первичных фотонов, охладившимся до нескольких градусов выше абсолютного нуля за 15 миллиардов лет космического расширения1). В 1965 г. Арно Пензиас и Роберт Вильсон из Лаборатории им. Белла в штате Нью-Джерси случайно сделали одно из важнейших открытий нашей эпохи. Работая с антенной, предназначенной для спутниковой связи, они зарегистрировали послесвечение Большого взрыва! Позднее и теория, и эксперимент были усовершенствованы, и эти исследования завершились измерениями, полученными с помощью спутника СОВЕ (Cosmic Background Explorer, «зонда космического фона») агентства NASA в 1990-е гг. На основе полученных данных физики и астрономы точно установили, что Вселенная действительно заполнена микроволновым излучением с температурой примерно на 2,7 К выше абсолютного нуля (если бы наши глаза были чувствительны к микроволнам, мы увидели бы рассеянное свечение вокруг нас), что в точности совпадает с предсказаниями теории Большого взрыва. Более точно, в каждом кубическом метре Вселенной (включая тот объем, который вы сейчас занимаете) находится около 400 миллионов фотонов, образующих огромное космическое море микроволнового излучения — эхо сотворения. Часть «снега» на экране телевизора, когда вы переключаетесь на канал, на котором закончилось вещание, объясняется именно этим туманным откликом Большого взрыва. Согласие между теорией и экспериментом служит подтверждением космологической картины Большого взрыва до момента времени, когда фотоны начали свободное движение по Вселенной, т. е. примерно до нескольких сотен тысяч лет после Большого взрыва.

Можно ли в наших исследованиях теории Большого взрыва продвинуться еще дальше вглубь времен? Можно. Используя законы обычной ядерной физики и термодинамики, можно сделать определенные предсказания об относительном проценте легких элементов, образованных во время первичного нуклеосинтеза, т. е. в период примерно от сотых долей секунды до нескольких минут после Большого взрыва. Например, теория говорит о том, что Вселенная примерно на 23 % должна состоять из гелия. Измерения содержания гелия в звездах и туманностях действительно подтверждают это предсказание. Возможно, еще более впечатляющим является подтверждение предсказания о содержании дейтерия, так как его малое, но ощутимое присутствие в космосе не может объясняться никакими другими астрофизическими явлениями, кроме Большого взрыва. Подтверждение этих предсказаний, а также более позднее подтверждение предсказания содержания лития говорят об успешной проверке гипотез о физике ранней Вселенной вплоть до момента первичного синтеза.

Все это настолько впечатляет, что хочется возгордиться успехами. Все данные, которыми мы располагаем, подтверждают космоло-


Глава 14. Размышления о космологии 227

гическую теорию, описывающую эволюцию Вселенной от сотых долей секунды после Большого взрыва до настоящего времени, отделенного от начала интервалом времени в 15 миллиардов лет. Однако не следует забывать о том, что новорожденная Вселенная развивалась с феноменальной скоростью. Мельчайшие доли секунды, гораздо меньшие сотых долей, суть космические эпохи, в течение которых формировались кажущиеся нам неизменными свойства окружающего мира. Поэтому физики продолжали движение вперед, пытаясь объяснить, что происходило во Вселенной в еще более ранние моменты. Так как при движении вспять во времени Вселенная становится все горячее, меньше и плотнее, все очевиднее потребность в квантовом описании материи и взаимодействий. Как мы видели с других точек зрения в предыдущих главах, квантовая теория поля точечных частиц справедлива лишь тогда, когда средние энергии частиц не превышают планковскую энергию. С точки зрения космологии этот предел соответствует моменту, когда вся окружающая нас Вселенная была сжата до размера мельчайшего зерна планковских размеров, а плотность была так высока, что сложно подыскать подходящую метафору, которая проиллюстрировала бы эту ситуацию: плотность Вселенной в эти моменты времени была просто колоссальной. При таких энергиях и плотностях гравитация и квантовая теория уже не могут рассматриваться как две различных сущности, каковыми они являлись в квантовой теории поля точечных частиц. Вместо этого — и в этом состоит смысл содержания данной книги — анализ должен базироваться на теории струн. На временной шкале такие энергии и плотности соответствуют точкам, удаленным от Большого взрыва менее чем на планковское время 10--43 с, следовательно, эта сверхранняя эпоха является космологической ареной теории струн.

Мы начнем экскурсию в эту эпоху с обсуждения предсказаний стандартной космологической модели о Вселенной в моменты времени, меньшие сотых долей секунды, но большие планковского времени.

От планковских времен до сотых долей секунды после Большого взрыва

Вспомним из главы 7 (обратите особое внимание на рис. 7.1), что в раскаленной среде ранней Вселенной три негравитационных взаимодействия оказываются связанными воедино. Расчеты зависимости силы этих взаимодействий от энергии и температуры показывают, что до моментов примерно через 10--35 с после Большого взрыва сильные, слабые и электромагнитные взаимодействия были одним «великим объединенным» взаимодействием. В этом состоянии Вселенная была гораздо более симметричной, чем сейчас. Подобно тому, как при плавке нескольких предметов из различных металлов получается однородная расплавленная смесь, при огромных температурах и энергиях ранней Вселенной все наблюдаемые различия между этими взаимодействиями пропадали. Но по мере того как Вселенная расширялась и охлаждалась, такая симметрия, как следует из формализма квантовой теории поля, разрушалась довольно резкими скачками и, в конце концов, привела к знакомой нам сравнительно асимметричной форме.

Нетрудно понять физический смысл этого понижения или нарушения симметрии, как его называют физики. Когда в резервуаре равномерно распределены молекулы Н2О, вода выглядит одинаково вне зависимости от того, под каким углом на нее смотреть. Рассмотрим, однако, что происходит при уменьшении температуры. Сначала все выглядит как обычно. На микроскопических масштабах уменьшается средняя скорость молекул воды — только и всего. Однако при понижении температуры до 0° С внезапно происходят радикальные перемены. Жидкая вода замерзает и превращается в лед. Как обсуждалось в предыдущей главе, это простой пример фазового перехода. Но сейчас для нас важно то, что при уменьшении температуры происходит уменьшение симметрии, которую проявляют молекулы Н2О. В то время как жидкая вода выглядит одинаково под любым углом наблюдения, демонстрируя симметрию относительно вращений, твердый лед выглядит совершенно иначе. Он


228 Часть IV. Теория струн и структура пространства-времени

обладает кристаллической структурой, т. е. если исследовать лед с должной точностью, он, как и любой кристалл, будет выглядеть по-разному при наблюдении под разными углами. Фазовый переход приводит к явному уменьшению вращательной симметрии.

И хотя мы рассмотрели лишь один знакомый пример, это утверждение справедливо в более общем случае: при понижении температуры во многих физических системах происходит фазовый переход, который обычно сопровождается уменьшением или «нарушением» некоторых исходных симметрии системы. В действительности система может испытывать последовательность фазовых переходов при изменении температуры в достаточно широких пределах. Простейшим примером снова служит вода. При температурах выше 100° С она представляет собой газ (пар). В этом состоянии у системы даже больше симметрии, чем в жидком, так как в этом случае молекулы Н2О не связаны вместе в одну плотную жидкую упаковку, а предоставлены сами себе. Все они равноправны и носятся по всему резервуару, не образуя скоплений или групп, по которым молекулы можно было бы различать исходя из близости к соседям. При высоких температурах господствует полная демократия и симметрия. При понижении температуры за 100-градусную отметку, естественно, начинают формироваться капли, и симметрия уменьшается. Дальнейшее понижение температуры не приводит к серьезным последствиям, пока не перейдена нулевая отметка, и в этот момент происходит фазовый переход из жидкости в лед, который также сопровождается резким уменьшением симметрии.

По мнению физиков, в моменты между планковским временем и сотыми долями секунды после Большого взрыва Вселенная вела себя аналогичным образом, испытав, по крайней мере, два подобных фазовых перехода. При температурах выше 1028 К все три негравитационные взаимодействия кажутся единым взаимодействием. Ситуация максимально симметрична. (В конце главы обсуждается как с помощью теории струн можно включить в этот высокотемпературный союз гравитационное взаимодействие.) Однако при понижении температуры ниже черты 1028 К во Вселенной происходит фазовый переход, при котором три силы природы выкристаллизовываются по-разному в разные типы взаимодействий. Их относительные величины и детали того, как они воздействуют на материю, начинают различаться. Очевидная при высоких температурах симметрия этих взаимодействий разрушается при охлаждении Вселенной. Однако, как показали Вайнберг, Салам и Глэшоу (см. главу 5), пропадает не вся высокотемпературная симметрия: между слабыми и электромагнитными взаимодействиями сохраняется глубокая связь. По мере дальнейшего понижения температуры ничего необычного не происходит до отметки 1015 К (в 100 миллионов раз больше температуры Солнца), когда во Вселенной происходит еще один переход, разъединяющий электромагнитные и слабые взаимодействия. Они тоже обособляются, разрушая более симметричный союз, и различие между ними растет с понижением температуры Вселенной. Этими двумя фазовыми переходами определяется наличие трех разных типов негравитационного взаимодействия, хотя приведенный обзор истории Вселенной говорит об их близком родстве.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных