Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Рельеф дна Мирового океана. Донные отложения




44.Оптические и акустические свойства морской воды.
Лучистая энергия Солнца, проникая в толщу воды, рассеивается и поглощается. От степени ее рассеивания и поглощения зависит прозрачность воды. Под прозрачностью воды понимают глубину, на которой белый стандартный диск диаметром 30 см (диск Секки) перестает быть видимым с поверхности моря. В Саргассовом море эта глубина достигает 67 м, в Средиземном — 50 м, в Черном — 25 м, в Азовском — Зм. Прозрачность зависит от содержания взвешенных частиц в морской воде. Поэтому наименьшая прозрачность наблюдается в прибрежной части, особенно после штормов. Значительно уменьшается прозрачность воды в период массового развития планктона, а также во время таяния льдов.
Совокупным действием отражения и рассеивания света в воде обусловливается ее цвет. Поток световой энергии, исходящий из глубин моря, вызывает голубой или синий цвет, который и является собственным цветом чистой воды. Особенности цвета воды каждого моря зависят от содержания в воде взвешенных частиц органического и минерального происхождения, растворенных газов и прочих примесей. Вот почему в наиболее “чистых” тропических водах цвет моря темно-голубой и даже синий, в шельфовых морях — зеленоватый, а в мутных прибрежных морях — имеет желтые оттенки.
Говоря об оптических свойствах морской воды, следует упомянуть и о таких явлениях, как свечение и цветение моря. Свечение поверхности моря в ночное время объясняется светом, излучаемым морскими организмами (планктоном и особыми видами бактерий). Цветение моря обусловливается массовым скоплением особей какого-либо вида, способных окрасить поверхность моря в один из цветов: желтый, красный, зеленый и т. д.
Распространение звука в океане. Скорость звука в океане зависит от сжимаемости воды, которая определяется температурой, соленостью и давлением. А так как соленость и температура воды в Мировом океане меняются от места к месту и от сезона к сезону, то и условия распространения звука в море меняются. Скорость звука в океанах может колебаться от 1400 до 1550 м/с- Максимальные скорости приурочены к глубинам 1200—1300 м. На этом уровне в воде существует своеобразный “звуковой канал”, в котором звук распространяется, как в “трубе”, на очень большие расстояния без потери энергии. Так, во время опытов в Атлантическом океане сигналы от взрывов бомб массой 0,2, 1,8, и 2,7 кг прослушивались на оси звукового канала соответственно на расстоянии 750, 2300 и 3100 миль.

45.Химический состав и соленость вод Мирового океана.
Теоретически не растворимых в воде веществ не существует, поэтому в морской воде содержатся почти все элементы таблицы Менделеева. Правда, некоторые элементы находятся в столь малых количествах, что их присутствие обнаруживается только в морских организмах, собирающих эти элементы из окружающей их морской воды. Таковы, например, кобальт, никель и олово, найденные в крови голотурий, омаров, устриц и других животных. Присутствие некоторых других элементов доказывается лишь их наличием в морских отложениях.
Среднее количество растворенных в водах Мирового океана твердых веществ составляет около 3,5% по весу. Больше всего в морской воде содержится хлора — 1,9%. натрия — 1,06%. магния — 0,13%, серы —0,088%, кальция — 0,040%, калия — 0,038%, брома - 0,0065%, углерода — 0,003%. Содержание остальных элементов, в том числе биогенных и микроэлементов, ничтожно мало, менее 0,3%. В водах океана обнаружены драгоценные металлы, но концентрация их незначительна, и при общем большом количестве в океане (золота — 55 • 105 т, серебра — 137 • 106 т) добыча их нерентабельна.
Главнейшие распространенные в воде элементы обычно находятся в ней не в чистом виде, а в виде соединений (солей). Основными из них являются: 1) хлориды (NaCl, MgCl), доля которых равна 88,7% всех растворимых в воде веществ. Они придают воде горько-соленый вкус;
2) сульфаты (МgSО4, СаSО4, Ка2SО4), которых в морской воде содержится 10,8%;
3) карбонаты (СаСО3), доля которых составляет 0,3% всех растворенных солей.
Для планетарного обмена веществ весьма важно то обстоятельство, что хлористые соединения, преобладающие в морских водах, находятся в реках в очень малом количестве (табл. 4). Напротив, карбонаты, в основном формирующие солевой состав речных вод, почти отсутствуют в океане.
Общее содержание твердых веществ, растворенных в морской воде, принято выражать в тысячных долях весовых единиц — промилле и обозначать знаком %0. Содержание растворенных твердых веществ, выраженное в промилле и численно равное их весу, выраженному в граммах в одном килограмме морской воды, называется соленостью. Средняя соленость океанических вод 35°/оо, т. е. в 1 кг вод содержится 35 г солей.
Установлено, что состав веществ (их соотношение), определяющий соленость морской воды, почти одинаков и постоянен во всех точках, как на поверхности, так и на глубинах Мирового океана. При изменении общего количества растворенных солей (солености) их процентное соотношение не изменяется. Поэтому для определения солености морской воды достаточно измерить количество одного какого-нибудь химического элемента (обычно хлора, как наиболее легко определяемого) и по нему вычислить общую соленость и количество всех остальных элементов.
Соленость воды в Мировом океане не везде одинакова. В открытой части она изменяется в пределах 33—37°/оо и зависит от климатических условий (разности испарения и количества выпадающих осадков). Поэтому в ее распределении четко проявляются черты широтной зональности, что позволяет картировать эту характеристику (карты изогалин). В отдельных районах широтная зональность нарушается влиянием переноса солей течениями.
Наименьшая соленость на поверхности открытой части Мирового океана наблюдается в высоких широтах. Это объясняется значительным превышением осадков над испарением, большим речным стоком (в северном полушарии), таянием плавучих льдов. По мере приближения к тропикам соленость растет, достигая максимальных значений в зоне между 20 и 25° широты, где испарение значительно превышает осадки. В экваториальных широтах количество атмосферных осадков возрастает, и соленость здесь вновь уменьшается
Распределение солености по вертикали различно в различных широтных зонах. Так, в полярных широтах до глубины 200 м соленость быстро возрастает, затем остается почти неизменной. В умеренных широтах соленость с глубиной изменяется мало. В субтропических — она уменьшается до глубины 1000 м, глубже соленость постоянная. В экваториальных широтах соленость постепенно возрастает, и под слоем поверхностных вод на глубине 100—150 м прослеживается слой высокосоленой воды (выше 36%о), переносимой с запада глубинными противотечениями, питающимися водами, поступающими из тропиков. Глубже этого слоя соленость убывает, а начиная с глубины 1000—1500 м становится почти постоянной.

46.Термический режим Мирового океана.
Термический режим океана во многом определяет тепловой режим и климат всей планеты. К главным приходным статьям теплового баланса Мирового океана относится солнечная радиация и теплообмен с атмосферой, к дополнительным — тепловой сток рек и выделение тепла при ледообразовании. Главные расходные части теплового баланса Мирового океана — это потери тепла на испарение и теплообмен с атмосферой, дополнительные—потери тепла на плавление льда. Распределение температуры воды на поверхности океана. Оно подчиняется закону широтной зональности, так как поступление солнечной энергии зависит от широты. Наиболее высокая температура воды на поверхности Мирового океана наблюдается в экваториальной зоне, несколько севернее экватора. (Юж. Полушарие океаническое, выс. исп-ть, понижает тем. Воды, влияние антарктиды). Линия наивысшей температуры воды называется термическим экватором. Вблизи него средняя годовая температура воды 24,7° С.
Азональные факторы 1. пассатная циркуляция – (с сев. На восток дует ветер, в зап. Части теплее), 2. Течения (Гольфстрим, у поб. Евразии на 5,7 ° выше чем у сев. Америки) 3. Апвелинг (подъем глубинных вод - Перуанский).
Между верхним слоем перемешивания с наиболее высокой температурой и глубинной холодной водой лежит «слой скачка» температуры, слой с наибольшими вертикальными градиентами. «Слои скачка» создаются преимущественно сезонным летним прогревом поверхностного слоя.

47.Плотность морской воды.
Плотность. Одной из важнейших характеристик морской воды является плотность. Плотностью морской воды в океанографии принято называть отношение массы единицы объема воды при той температуре, которую она имела в момент наблюдений, к массе единицы объема дистиллированной воды при 4° С, т. е. при температуре ее наибольшей плотности. Плотность морской воды существенно растет с увеличением солености. Возрастанию плотности поверхностных слоев воды способствует охлаждение, испарение и образование льда. В открытом океане плотность, как правило, определяется температурой и поэтому от экватора к полюсам растет. С глубиной плотность воды в океане увеличивается.
Давление и сжимаемость. Вода значительно плотнее воздуха. Поэтому изменение давления с увеличением глубины в океане происходит гораздо быстрее, чем в атмосфере. На каждые 10 м глубины давление увеличивается на 1 атм. Нетрудно подсчитать, что на глубинах порядка 10 км давление достигает 1 тыс. атм.
Однако воздействие давления воды на живые глубоководные организмы незаметно, так как чрезвычайно мало сжатие воды, т. е. Уменьшение ее удельного веса.
Интересно отметить, что, несмотря на малую сжимаемость морской воды, уровень реального Мирового океана расположен примерно на 30 м ниже того уровня, который он бы занимал при условии несжимаемости воды.

48.Морские льды.
Морской лед - любая форма льда, образовавшаяся в море в результате замерзания морской воды. Характерными свойствами морского льда являются соленость и пористость, которые определяют его плотность (от 0.85 до 0.93-0.94 г/см куб.). Из-за малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины.
Морской лед начинает таять при температуре выше -2.3 град.С; он более эластичен и труднее поддается раздроблению на части, чем пресноводный лед.
Морской лед по своему местоположению и подвижности разделяется на три типа: припай, дрейфующие льды, паковые многолетние льды (пак).
Ледовый режим Мирового океана определяется тем, что на преобладающей части его площади температура воды в течение всего года выше точки замерзания, поэтому льдообразование наблюдается только в полярных и субполярных широтах. В умеренной зоне лишь очень в немногих, преимущественно мелководных морях на короткое время устанавливается ледовый покров. Значительное отодвигание границы зимнего льдообразования в сторону полюсов определяется также соленостью, поскольку соленая вода замерзает при более низкой температуре, чем пресная.
Пресная вода, как известно, при охлаждении достигает наибольшей плотности при +4° С, а начинает замерзать только при 0° С. Процесс замерзания солоноватых вод (до 24,7°/оо) происходит так же, как и в пресной воде: вода сначала достигает температуры наибольшей плотности при данной солености, а затем точки замерзания.
При солености 24,7°/0о температура замерзания и наибольшей плотности одинакова (—1,332° С). При солености больше 24,7%о температура наибольшей плотности ниже температуры замерзания, вследствие чего замерзание морской воды происходит иначе, чем пресной, при этом только часть солей переходит в лед, образовавшийся из морской воды, другая же часть стекает обратно в воду в виде солевого раствора, увеличивая тем самым соленость, а следовательно, и плотность поверхностной воды. Это обстоятельство, одной стороны, способствует поддержанию и усилению конвекционных движений и тем самым задерживает замерзание, а с другой — требует дальнейшего понижения температуры, т. к. с увеличением солености понижается температура замерзания. Поэтому замерзание морской воды происходит не при одинаковой температуре, а при понижающейся.
Плотность соленого льда меньше плотности льда пресного (0,85—0,94 г/см3) и зависит от температуры, солености, плотности, возраста льда и условий льдообразования.
Морской лед по сравнению с пресноводным отличается большой пластичностью и вязкостью, но обладает меньшей прочностью.
В отличие от неподвижного льда (забереги, береговой припай), морской лед может быть плавучим. Плавучие льды, не связанные с берегом, называются дрейфующими. Среди них по размерам различают битый лед (от нескольких метров до 100 м в поперечнике) и ледяные поля, подразделяющиеся на гигантские (свыше 10 км), обширные (от 2 до 10 км) и большие поля (0,5—2 км).
В высоких широтах из-за короткого и холодного лета образовавшиеся за зиму льды не успевают растаять полностью, поэтому в этих районах встречаются льды разного возраста — от однолетних до многолетних. Многолетние (квазипостоянные) льды, мощность которых может достигать десять и более метров, называют паковыми. Паковые льды почти не содержат солей и пузырьков воздуха и поэтому имеют голубоватый цвет. В Северном Ледовитом океане такие льды занимают до 80% площади океана. У берегов Антарктиды широкого распространения они не имеют. Для обычных ледокольных судов паковые льды непроходимы.
Кроме собственных морских льдов в океанах и морях встречаются речные и материковые (глетчерные) льды. Речные пресные льды выносятся реками во время ледохода, часто имеют желтоватую окраску, летом тают или вкрапливаются в льды морского происхождения. Материковые льды тоже пресные, голубоватые, обычно большой мощности. Они представляют собой обломки материкового или шельфового льда, сползающие в океан, и называются айсбергами.
Таяние морского льда в основном зависит от интенсивности солнечной радиации и альбедо его поверхности, как правило, покрытой снегом, и начинается с загрязненных участков (обычно о берегов). После весеннего перехода температуры воздуха через 0° на поверхности льда образуются озерки — снежницы. Прочность структура пропитанного талой водой льда изменяются так же, как подмоченного водой куска сахара. Не изменяя существенно своих размеров, лед становится чрезвычайно хрупким и легко рассыпается при малейшем надавливании на него
Льды покрывают около 15% всей акватории Мирового океана, т. е. 55,4 млн км2, в том числе 39 млн км2 в южном полушарии.
Отдельные айсберги в северном полушарии достигают 35° с. ш., в южном — 40° ю. ш. и даже встречаются в тропиках. Для северных вод типичный крупный айсберг может иметь 200 м в поперечнике и возвышаться над уровнем моря примерно на 25 м. Глубина подводной части достигает 225 м, а общая масса 5 • 109 кг. Мощность Антарктических айсбергов доходит до 500 м, а размеры в поперечнике достигают нескольких десятков километров.

49.Уровень воды океанов и морей
Свободная поверхность океанов и морей называется уровенной. В спокойном состоянии она должна совпадать с поверхностью геоида. Однако совокупное влияние многих факторов: температуры, атмосферного давления, ветра, приливообразующих сил, водного баланса, течений и т. д.— вызывают ее отклонение. Поэтому все части Мирового океана, сообщаясь между собой и образуя единую систему, имеют неодинаковый уровень, который изменяется во времени. Причем колебания уровенной поверхности могут иметь периодический и непериодический характер. Наиболее правильные во времени периодические колебания поверхности океана возбуждаются приливообразующими силами. Колебания уровня, обусловленный деятельностью атмосферы и солнечной радиации, а также геотермическими и геодинамическими явлениями в земной коре (землетрясение и моретрясение, извержение подводных вулканов, тектонические движения и т. д.), имеют обычно непериодический характер и могут быть кратковременными и продолжительными (вековыми) В общем режиме уровня океана (моря) можно выделить следующие главнейшие кратковременные непериодические составляющие.
1) сгонно-нагонные колебания, связанные с циркуляцией вод у побережий; при сгонных ветрах менее плотные воды уносятся в открытое море, а на смену им поднимаются более плотные глубинные воды. Уровень воды при этом понижается. При нагонных ветpax происходит повышение уровня;
2) колебания уровня, вызванные изменением атмосферного давления. При повышении атмосферного давления на 1 мб уровень моря понижается на 10 мм и наоборот;
3) колебания уровня вследствие неравномерностей в процесс влагооборота. Кратковременные резкие подъемы уровня моря могут вызвать ливневые дожди. Сильное испарение в некоторых районах юдит к значительным понижениям уровня моря;
4) колебания уровня вследствие изменений плотности воды. При увеличении плотности уровень понижается, и наоборот;
5) колебания уровня, вызванные прохождением цунами — огромных волн, образующихся в океанах (морях) под действием подводных землетрясений или вулканических взрывов. Волны цунами имеют длины, измеряемые десятками и сотнями километров, скорости, измеряемые сотнями километров в час, и высоты у берегов, измеряемые несколькими метрами, а иногда и десятками метров.
Медленное и длительное изменение уровня океана (вековые непериодические колебания) может быть вызвано двоякими причинами. Если уровень океана повышается или понижается в связи с увеличением или уменьшением воды в нем (например, в связи с покровными оледенениями), то эти изменения называют гидрократическими. Колебания уровня, вызванные изменением емкости океана в связи с процессами, происходящими внутри Земли, и колебаниями земной коры, называют геократическими. Эти колебания не зависят от изменения количества воды и определяются поднятием или опусканием участков литосферы. Опускание дна океанов вызывает понижение его уровня, поднятие дна — повышение.
За последние полвека уровень Мирового океана повысился почти на 10 см, но скорость подъема в разных его частях неодинакова.

50.Волны в океанах и морях.
Волны представляют собой периодические колебания частиц воды около положения их равновесия (вверх и вниз от среднего уровня).
Волнение водной поверхности океанов, морей и озер — частный случай ритмических колебательных движений в природе. При движении одной жидкой или газовой массы по другой на плоскости их соприкосновения в результате трения неизбежно возникают волны.
Главная причина волнений на поверхности океана — ветер. При малых скоростях ветра (около 0,25 м/с) от трения воздуха воду возникает рябь — система мелких равномерных волн. Они появляются при каждом порыве ветра и мгновенно затухают. При усилении ветра вода испытывает не только трение, но и удары, и при скорости ветра больше 1,0 м/с устанавливаются ветровые волны.
Волнения могут быть вызваны также резким изменением атмосферного давления (анемобарические волны), землетрясениями, извержениями вулканов (сейсмические волны — цунами), приливообразующими силами (приливные волны). Движущиеся суда создают особые — корабельные волны.
Волны, образованные на поверхности и в самом верхнем слое воды, называются поверхностными в отличие от внутренних волн, возникающих на некоторой глубине и незаметных на поверхности моря.
Волны характеризуются следующими элементами
гребень — наиболее высокая часть волны, выступающая над уровнем свободной поверхности;
ложбина — часть волны, находящаяся ниже уровня спокойной водной поверхности;
подошва — наиболее углубленная часть ложбины;
склон волны — часть волны между гребнем и подошвой;
длина () — горизонтальное расстояние между гребнями или подошвами двух соседних волн;
высота (h) — превышение волны над ее подошвой;
крутизна — угол между ее склоном и горизонтальной плоскостью;
быстрота продвижения волн характеризуется их скоростью и периодом.
Скорость (V) — расстояние, пробегаемое в единицу времени гребнем волны (или любой другой точкой ее профиля).
Период () — промежуток времени, в течение которого каждая точка волны перемещается на расстояние, равное ее длине.
Размеры ветровых волн находятся в прямой зависимости от скорости ветра, продолжительности его воздействия на водную поверхность, размеров и глубины водного пространства, охваченного ветром. Высота ветровых волн обычно не превышает 4 м; реже образуются волны высотой 8—10 м и более. Наибольшие ветровые волны наблюдаются в южном полушарии, где океан непрерывен и где западные ветры постоянны и сильны. Здесь волны достигают 25 м высоты, их длина составляет несколько сотен метров.
В морях волны значительно меньше, чем в открытом океане. Так, в Черном море зафиксирована максимальная высота волны — 12 м.
Внутренние волны, как показывают наблюдения, имеют амплитуду, обычно значительно большую, чем поверхностные ветровые волны. Даже в приповерхностных слоях их “высота” весьма велика. Правда, скорость их распространения и орбитальные скорости гораздо меньше, чем у поверхностных вод, и. следовательно, энергия внутренних волн гораздо меньше, чем у поверхностных волн той же амплитуды. Наблюдения показывают, что высота внутренних волк может достигать 20—30 м
Цунами образуются в результате подводных землетрясений или извержений вулканов. Поэтому волны цунами называют морскими сейсмическими волнами.
Непосредственной причиной образования цунами являются изменения рельефа дна, происходящие в результате землетрясения:| оползни, провалы, сбросы, поднятия и другие подобные явления, возникающие практически мгновенно на огромных участках океана. Причем механизм возникновения цунами зависит от характера изменения рельефа дна. Так, при образовании цунами в момент возникновения провала на дне океана вода устремляется к центру образовавшейся впадины, заполняет ее, затем под действием инерционных сил переполняет, формируя невысокий, но громадный по объему холм воды на поверхности океана. Под действием тяжести эта выпуклость начинает совершать колебательные движения относительно уровня океана, соответствующего состоянию покоя — образуется цунами.
При резком поднятии дна на поверхности океана сразу же образуется выпуклость, которая под действием силы тяжести приходит в колебательное движение, и это тоже приводит к возникновению цунами и т.д.
Наступлению волн цунами на берег обычно предшествует понижение уровня моря. В течение нескольких минут вода отступает от берега на сотни метров, а при небольшой глубине и на километры. После этого приходят волны цунами. За первой крупной волной, как правило, приходит еще несколько волн с интервалом от 20 до мин 1—2 час. Скорость распространения цунами колеблется от 150 км/ч до 900 км/ч.
Приближаясь к берегу, волны замедляют свое движение и резко увеличивают высоту (до 20—30 м).
Особенно высокие волны образуются в узких, воронкообразных ивах с крутыми берегами.

51.Приливы.
Периодические колебания уровня моря, возникающие под действием сил притяжения Луны и Солнца, называются приливными явлениями. Фазы подъема и спада уровня называют собственно приливом и отливом.
Приливообразующие процессы, обусловленные силами тяготения, вызывают колебательные движения всей массы вод Мирового океана. Эти движения сопровождаются изменениями уровня морей и океанов и течениями периодического характера. Т. е. возникают поверхностные и внутренние волны под действием Луны и Солнца.
Приливообразующая сила Луны в среднем в 2,17 раза больше приливообразующей силы Солнца. Поэтому основные черты приливных явлений определяются главным образом взаимным положением- Луны и Земли.
Вследствие непрерывного изменения взаимного положения Земли, Луны и Солнца изменяются и величины приливообразующих сил Луны и Солнца. Они могут действовать в одной и той же точке как в противоположных направлениях, так и в одном и том же. Это отражается на характере и величине наблюдаемых приливов и вызывает их изменения.
Существенное влияние на величину и характер приливов оказывают физико-географические условия моря (океана): очертания берегов, размеры, глубины, наличие островов и т. д. Если бы океан покрывал Землю сплошь слоем одинаковой глубины, приливы на одной и той же широте были бы одинаковыми и не зависели бы только от приливообразующих сил Луны и Солнца. Однако, как известно, приливные колебания уровня на одной и той же широте меняются в весьма широких пределах. Так, в заливе Фанди (Канада) приливные колебания уровня составляют 16 м, а в Балтийском море, расположенном на той же широте, они практически отсутствуют.
При приливах и отливах возникают поступательные движения воды — приливные течения. Во время прилива они направлены к берегу, а при отливе — от берега. Расстояние по вертикали между уровнями полной и малой воды называется величиной прилива. Половина величины прилива — амплитуда прилива. Величину прилива не следует смешивать с высотой прилива, которая понимается как положение уровня в данный момент над каким-либо другим уровнем, условно принятым за нуль.
Промежуток времени между двумя последовательными полными или малыми водами называется периодом прилива (за это время наблюдаются один прилив и один отлив).
В зависимости от периода различают полусуточные приливы, имеющие средний период, равный половине лунных суток (12 ч 25 мин); суточные со средним периодом, равным лунным суткам (24 ч 50 мин); смешанные, у которых в течение половины лунного месяца период меняется с полусуточного на суточный.
Наблюдая за величиной прилива и временем наступления полных и малых вод, легко заметить, что они не остаются неизменными ото дня ко дню, а для случая смешанных приливов — и в течение суток.
Неравенства приливов вполне закономерны и связаны с изменением положения Луны, Солнца и Земли.
Выделяют следующие основные виды неравенств в явлении приливов: суточные, полумесячные, месячные (параллактические) и длиннопериодные.
Приливные волны распространяются вверх по некоторым рекам, вызывая колебания уровня на большом расстоянии от устья. Это расстояние зависит от уклона дна реки и скорости ее течения. Так, на реке Амазонке приливы ощущаются на расстоянии 1400 км от устья, на реке Святого Лаврентия — 700 км, на реке Хатанге — 700 км, на реке Ганг — 250 км и т. д.
Приливообразующая сила сказывается не только на гидросфере. Приливы проявляются в атмосфере в виде периодических изменений атмосферного давления с амплитудой 1,25 мбар Приливы, вызванные притяжением Луны и Солнца, оказывают тормозящее воздействие на вращение Земли. С этим связано уменьшение угловой скорости Земли и удлинение земных суток (0,001 за каждые 1000 лет), а также превращение механической энергии торможения вращения Земли в тепловую.

52.Морские течения.
Это поступательные движения масс воды в морях и океанах. На направление морского течения большое влияние оказывает сила вращения Земли, отклоняющая течения в Северном полушарии вправо, в Южном - влево. Морские течения различаются: по происхождению - вызываемые трением ветра о поверхность моря (ветровые течения), неравномерным распределением температуры и солености воды (плотностные течения), наклоном уровня (стоковые течения) и т.д.; по характеру изменчивости - постоянные, временные и периодические (приливного происхождения); по расположению - поверхностные, подповерхностные, промежуточные, глубинные, придонные; по физико-химическим свойствам - теплые (например, Гольфстрим, Куросио), холодные (например, Лабрадорское, Курильское течения), опресненные и соленые.
Горизонтальный перенос масс воды из одного места океана ил! моря в другое называется течением. Эти посту нательные движения воды играют огромную роль в жизни Мирового океана: способствуют обмену вод, перераспределению тепла, изменению береге переносу льдов, а также оказывают большое влияние на циркуляцию атмосферы и на климат различных частей Земли.
Пассаты в Северном полушарии обусловливают возникновение пассатного течения севернее экватора, которое под действием силы Кориолиса приобретает широтное направление и пересекает океан с востока на запад. В южном полушарии южнее экватора устанавливается такое же пассатное течение. У западного берега океана северное пассатное течение под влиянием конфигурации берега отклоняется к северу, а южное — к югу. В пределах 30—40° с. ш это течение под действием силы Кориолиса приобретает широтное направление и пересекает океан с запада на восток. У восточного берега оно раздваивается. Южная ветвь течения устремляется вдоль берега, обеспечивая принос более холодных вод в тропические районы и постепенно отклоняясь к западу, вливается в северное пассатное течение, замыкая таким образом северное циркуляционное кольцо верная ветвь, также распространяясь вдоль берега, образует теплое течение, поскольку здесь происходит перенос более теплых вод с юга. Отклоняясь к западу под воздействием конфигурации Северно-Американского материка, в Тихом океане эта ветвь образует второе северное циркуляционное кольцо, значительно меньшее, чем первое. В Атлантическом океане подобное кольцо также имеется, но севернее его, благодаря сложному распределению пространств суши и моря, здесь образуется еще одно небольшое циркуляционное кольцо в пределах Норвежского моря.
В Южном полушарии картина аналогичная, но второго кольца течений нет. На юге, там где расположено сплошное водное пространство, существует мощное дрейфовое течение западных ветров (круговое антарктическое), соединяющее воды трех океанов воедино.
Вдоль экватора, между северным и южным пассатными течениями, образуется экваториальное противотечение, имеющее в отличие пассатных направление с запада на восток. Оно в значительной мере имеет характер стокового и питается ответвлениями пассатных течений.
Поверхностные течения, возбуждаемые ветром, заметны только в верхнем слое в несколько десятков метров, поэтому долго считали, что в глубинах океана нет перемешивания воды течениями.
Однако, начиная с 1952 г., одно за другим были обнаружены глубинные противотечения в Тихом, Атлантическом и Индийском океанах. Их рассматривают как компенсационные, обеспечивающие недостаток воды, вызванные поверхностными течениями. Под глубинными противотечениями в ряде районов Мирового океана обнаружены течения противоположного направления (придонные). Очевидно, в океане существует многосерийное движение вод, пока еще не изученное.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных