Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Inorganic Chemistry

Branches of Chemistry

Organic Chemistry

In an achievement regarded as a milestone in synthetic organic chem­istry, two research groups in 1994 announced development of techniques for the total synthesis of the anticancer drug taxol. Originally isolated from the Pacific yew tree, taxol was regarded as a promising treatment for a variety of cancers, including those of the ovary, breast, and lung. At first, obtaining taxol in quantity had been expected to require the cutting and processing of thousands of trees, leading to concern about destruction of yew forests. The shortage in supply set off a worldwide race among organic chemists to obtain the molecule from other sources, yet its total synthesis from simple starting materials proved to be one of the most elusive goals of the past decade. The taxol molecule is large and complex, built from an unusual system of four rings extremely difficult to recreate in the laboratory.

The two techniques to taxol synthesis are different and were devel­oped by separate research groups. Robert A. Holton and co-workers of Florida State University used ordinary camphor as a starting material and proceeded with a "linear strategy to assemble each component of the molecule one piece after another. By contrast, K.C. Nicolaou and co-workers of the Scripps Research Institute, La Jolla, Calif., and the University of California at San Diego used a "convergent55 strategy in which two large parts of the taxol molecule are synthesized separately, and then joined.

Neither synthesis was expected to have an immediate impact on the commercial supply of taxol, which no longer was scarce. Taxol was be­ing made in a semi-synthetic process from chemical precursors collected from yew needles and twigs, which can be harvested without killing trees. But scientists said that the work could have the way for a simpler total synthesis and that it had expanded knowledge about synthesizing com­plex molecular structures.

Natural gas, best known as a fuel for home heating and cooking, is typically 85-90% methane (CH4). Researchers long have sought cheaper and better ways for exploiting the methane in natural gas as a raw mate­rial for making industrial chemicals that currently must be made from petroleum. Doing so has proved difficult because methane does not readily undergo the proper chemical reactions.

During the year Ayusman Sen and Minren Lin of Pennsylvania State University reported developing a single-step process that converts meth­ane into acetic acid (CH3COOH) under mild conditions. An addition to being the acid in vinegar, acetic acid is a key raw material of the chemical industry, used in the manufacture of plastics, pharmaceuticals, pesticides, dyes, and other products. Most industrial acetic acids has been obtained from petroleum. Sen and Lin5s process requires only methane, carbon monoxide (CO), oxygen (O2), and a catalyst, rhodium chloride (RhCl3), which is dissolved in water to promote the conversion of methane. The reaction, which can be summarized as CH4 + CO + 1/2O2 -> CH3COOH,

gives high yields and produces only methanol and formic acid as by­products. Importantly, the reactions require temperatures of only 100°C (212°F), the boiling point of water. By contrast, a process used for manufacturing acetic acid from methane requires three costly steps, consumes much energy, and requires hazardous organic solvents that must be con­tained or recycled. The researches regarded the new process as an impor­tant first step toward exploiting the methane in natural gas.

Chemists were devoting increased research attention to molecular self-assembly, a phenomenon in which complex molecules form sponta­neously from simple components. Some scientists suggested that life on Earth originated in such a way, with simple chemical components spon­taneously growing more complex and developing the ability to replicate. In an advance in the understanding of self-assembly, chemists at the University of Birmingham, England, announced discovery of a mole­cule that pieces itself together in a previously unrecognized way. J. Eraser Stoddart and David Amabilino synthesized the new molecule, which was dubbed olympiadane because its five underlinked molecular rings resemble the logo of the Olympic Games. Many organic compounds are formed from ringlike arrays of atoms that are attached by chemical bonds between atoms. Olympiadane's rings, however, are interlocked mechan­ically without bonds. Stoddart and Amabilino encouraged the self-as­sembly by careful control of temperature, pressure, and other conditions during synthesis. During assembly, chains of atoms thread together one inside the other, much like the links on a chain, ending with five inter­locked rings.

Bleach additives in laundry detergent powders work by oxidizing fabric stains through the action of hydrogen peroxide. Laundry deter­gents usually contain a berborate compound that forms hydrogen per­oxide when the detergent powder comes into contact with water. Hy­drogen peroxide, even when aided by detergent additives that lower the water temperature needed for acceptable bleaching activity, does not bleach effectively unless the water temperature is above 40°C (104°F). Many consumers, however, want to do laundry in cooler wa­ter in order to conserve energy and avoid damaging modern fabrics. Chemists thus have searched for low-temperature oxidants that bleach in cooler water.

Inorganic Chemistry

Most solid materials expand when heated as their chemical bonds lengthen and their atoms move farther apart. The tendency to expand creates serious problems for solids used in optical, electronic, and other applications. Even slight expansion of materials in telescope mirrors and lasers, for instance, can result in distortion and poor performance. Heat-related expansion is a major cause of premature failure of circuit boards in computers and other electronic devices.

Arthur Sleight and co-workers of Oregon State University announced discovery of a unique family of solid materials that could help solve such problems. The materials - typified by ZrVPQ4, an oxide of zirconium (Zr), vanadium (V), and phosphorus (P) - contract steadily when heated between about 200° and 800°C (390° and 1,470°F). Sleight suggested and the unusual behaviour of the materials is due to their crystal struc­ture, in which atoms of vanadium and phosphorus bond not to each other but to an intermediate atom of oxygen. When such a material is heated, the oxygen atom vibrates in a fashion that tends to physically pull the other atoms closer together. The behaviour differs from that of existing materials that resist expansion, such at those used in heat-resist­ant cookware. Those materials are made of small particles that, when heated, expand in some directions and contract in others, resulting in little net change in volume. But existing materials have disadvantages that limit their use in other applications. Sleight said that compounds such as ZrVPQ4 might be used as components in new polymer, graphite, or ceramic composites that would be more versatile yet highly resistant to heat-related failure.

Nuclear Chemistry

A commission of the International Union for Pure and Applied Chemistry (IUPAC) recommended names for inner chemical elements. The elements, which number 101 through 109 on the periodic table, long had gone without official names because of conflicting claims of discov­ery and the need for experimental confirmation. The problems were re­solved in recent years. All of the elements are unstable and synthetic, having been made in accelerators by fusion of the nuclei of atoms of lighter elements. If approved by the full IUPAC at a meeting scheduled for 1995, for following names and symbols would become part of the periodic table: 101, mendelevium (Md); 102, nobelium (No); 103, law-rencium (Lr); 104, dubnium (Db); 105, joliotium (Jl); 106, rutherfordi-um (Rf); 107, bohrium (Bh); 108, hahnium (Hn); and 109, meitnerium (Mt). The recommendations caused intense controversy because the com­mission rejected several names proposed by the discoverers. Scientists who discover a new element traditionally have the right to name it. A stir arose, for instance, over rejection of the name seaborgium (Sg) proposed by the discoverers of element 106. The name would have honoured No­bel laureate Glenn T. Seaborg, the codiscoverer of plutonium and nine other transuranic elements.

In November Peter Armbruster and co-workers at the GSI (Heavy Ion Research Center), Darmstadt, Germany, announced the discovery of element 110. They created three atoms of the element by fusing nuclei of isotopes of nickel and lead in GSFs heavy-ion accelerator. The fol­lowing month Armbruster's team announced that they had made ele­ment 111 by fusing nickel and bismuth nuclei.

Biochemistry

An enzyme called ATP synthase is the central energy-generating molecule in almost all forms of life. This protein promotes, or catalyzes, the synthesis of adenosine triphosphate (ATP), which stores chemical energy in a special bond, termed a high-energy phosphate bond. When the bond is broken, or hydrolyzed, thereby separating a phosphate group from the rest of the ATP molecule, the stored energy becomes instantly available. By means of additional chemical reactions, that energy can be transformed into energy needed, for example, to make muscle cells con­tract, assemble amino acids into proteins, or transmit signals along nerve fibres. In animals ATP is formed in cellular substructures termed mito­chondria as nutrients are metabolized. Plants form ATP inside their chlo-roplasts as photosynthesis converts sunlight into chemical energy. Cer­tain bacteria produce ATP in their cell membranes.

Many biochemists worldwide have studied ATP synthase's struc­ture and function since it was first isolated in 1960. In an advance herald­ed as a landmark in those efforts, British biochemists in 1994 reported the deciphering of the atomic structure of a key portion of the ATP syn­thase molecule. John E. Walker of the Medical Research Council Labo­ratory of Molecular Biology, Cambridge, heated the research. Walker's group spent 12 years studying the biochemistry of ATP synthase and trying to grow light-quality crystals of the enzyme. Crystals were neces­sary for analyzing the enzyme's structure via X-ray diffraction techniques.

Researchers said the work would help answer many questions about the way living organisms produce energy. Walker also predicted that the structural determination would lead to new insights into the molecular basis of aging. Mitochondrial genes that direct the production of part of the ATP synthase molecule mutate at a much faster rate than conven­tional genes in a cell's nucleus. Walker and other scientists suspected that the mutations accumulate with time as an organism ages. The changes impair an organism's ability to produce energy and may be a key factor in Parkinson's disease, Alzheimer's disease, and other generative diseas­es of aging.

 

<== предыдущая лекция | следующая лекция ==>
Основные виды маркетинговых коммуникаций, осуществляемые на «Интерпайп НТЗ»: сбытовая политика и реклама на предприятии (цели, пути совершенствования и усовершенствования). | ОБЩАЯ ХАРАКТЕРИСТИКА ТИПА


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных